

des Directeurs des Routes

Conference of European **Directors of Roads**

Development of a Crash Modification Factors Model in Europe

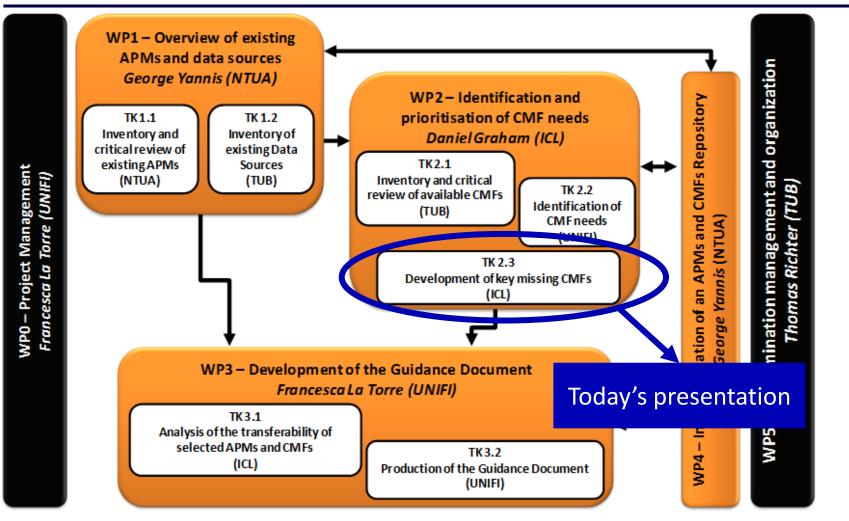
- **1**. The PRACT Project
- 2. CMF Development: Motivation and Contribution
- 3. Methodology and Key Results
- 4. Conclusions

1. The PRACT Project

Key Objective

- The PRACT project aimed to develop a practical guideline and a user friendly tool that will allow the different road administrations to:
 - adapt the basic APM function to local conditions based on historical data
 - identify the CMFs that could be relevant for the specific application
 - verify if the selected CMFs are transferable to the specific condition
 - **apply the calibrated model** to the specific location to be analysed.

The Consortium



with the support of

- Project Manager: Elizabeth Mathie, Highways Agency UK
- Funded by the national road authorities of Germany, Ireland, UK and Netherlands within the CEDR 2013 Call Safety

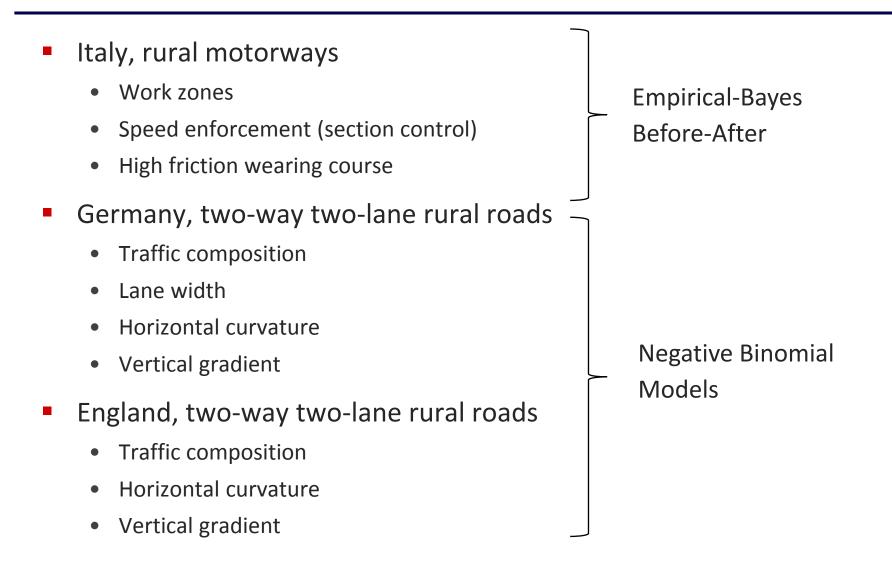
Project Work Programme

- Two year project that ended in March 2016. Workshop in Berlin 19 on \$\$\$\$.
- Project outputs available at <u>www.practproject.eu</u>
- Repository available at <u>www.pract-repository.eu</u>

2. CMF Development: Motivation and Contribution

- There is a lack of CMF estimates based on European data
- A questionnaire survey of worldwide National Road Agencies and a comprehensive review of existing literature on CMFs for 92 countermeasures/road features helped identify CMF needs
- Within PRACT, new CMFs were estimated to fill some of these needs
- Estimation of new CMFs was somewhat constrained by data availability

CMFs developed within PRACT


- Italy, rural motorways
 - Work zones
 - Speed enforcement (section control)
 - High friction wearing course
- Germany, two-way two-lane rural roads
 - Traffic composition (% HGV)
 - Lane width
 - Horizontal curvature
 - Vertical gradient
- England, two-way two-lane rural roads
 - Traffic composition (% HGV, % two-wheel motor vehicles)
 - Horizontal curvature
 - Vertical gradient

These are CMFs that

- were identified as highly desirable and often lacking based on survey & lit. review
- for which suitable data for estimation were available

3. Methodology and Key Results

Methodologies used for CMF development

Methodologies used for CMF development

- Empirical-Bayes Before-After
 - Controls for the effects of regression to the mean which can arise when countermeasures are implemented at accident blackspots
 - Requires data on the year/date of treatment/countermeasure implementation, and on accident rates and traffic flow both before and after implementation
- Negative Binomial models
 - Suitable for CMF estimation for road features or countermeasures that are independent of accident rates (e.g. traffic composition, blanket treatments)
 - Advantage: can provide CMF estimates as a function of the countermeasure of interest

Key results (I)

Presence of a work zone	 Presence of a work zone increases accidents by 33% 	
	 Some work zone layouts are more dangerous than others: A partial diversion of flow in 2-lane carriageways, with a single lane not diverted, increases accidents more than threefold (compared to no works at all). 	
	 Some work zone layouts appear not to affect accidents (e.g. closure of emergency or slow lane in 3-lane carriageways 	
Speed enforcement (section control)	 0.52-1.55 depending on injury/ crash type and traffic flow 	
	 In the rage 0.81-0.92 in most cases 	
	 Larger effect when traffic flow is high (0.5-0.6 for multi-vehicle crashes when AADT ≥ 55000 veh/day) 	
	 No effect in some cases - most importantly no effect on single vehicle fatal and injury crashes irrespective of AADT 	
	 +-ve effect on multi-vehicle PDO crashes & low AADT (< 25,500 veh/day) 	
High friction wearing course	CMF = 0.27 for fatal and injury run-off-road crashes on wet pavements	

Variable	Germany	England
Road width (RW) - metres	e ^{-0.17*ΔRW}	-
Horizontal curvature (HC)	е ^{0.003*} ^{ΔHC}	insignificant
Vertical gradient (V) - %	insignificant	e ^{0.09*ΔV}
% HGV (HGV)	insignificant	e ^{-7.6*ΔHGV}
% two wheel traffic	-	insignificant

Results obtained from the two models are not comparable. Could be due to:

- CMFs not being transferable between countries
- Slight differences in variable definition (e.g. horizontal curvature)
- Data used in estimation

4. Conclusions

Conclusions and future research directions

- Gaps exist in the CMF literature. There is a lack of European estimates.
- Gaps are difficult to fill due to a lack of suitable data for estimation.
- Within PRACT, CMFs for 8 countermeasures/road features were estimated to fill some of these gaps. CMF development was constrained by data availability.
- Increased data availability could allow the use of advanced causal methods to estimate CMFs (e.g. propensity score).
- More information on PRACT activities can be found at <u>www.practproject.eu</u>

New CMFs: Key conclusions reached

- The effect of road characteristics and traffic composition on accident rates could depend on the road network under consideration
- High friction wearing course can reduce run-off-road crashes on wet pavements by 73%
- A 10-20% decrease in accidents can be expected with speed enforcement (section control), but this may depend on the level of traffic flow and the type of crash considered
- In general, the presence of work zone increases accidents by 33%; the effect can vary depending on the layout from no effect to up to a threefold increase