

International Conference "Artificial Intelligence, Intelligent Transport Systems" 25-28 May 2016, Brest, Belarus

A Classification of Driver Assistance Systems

George Yannis, Professor Costas Antoniou, Associate Professor John Golias, Professor Stergios Mavromatis, Assistant Professor

National Technical University of Athens Department of Transportation Planning and Engineering

General Considerations

Driver Assistance Systems seem to have a considerable potential for road safety and traffic efficiency improvement

Driver Assistance Systems: **Support** the modification of the driving task by providing

- information
- advice
- assistance

Influence directly and indirectly the behaviour of users of both equipped and non-equipped vehicles

Alleviate accident consequences by in-vehicle intelligent injury reducing systems

Classification of Driver Assistance Systems

System oriented approach Based on the road safety features examination, where the **distinct phases in the accident** process are utilized

User oriented approach Based on their functional analysis, these systems are classified according to the **supported levels of driving tasks**

- individual / professional driver
- fleet owner
- elderly drivers
- etc.

System oriented approach User oriented approach

Such classification fails to provide answers on the usefulness of Driver Assistance Systems

Certain parameters not taken into consideration

- impact to traffic efficiency
- road safety

Outline these two different approaches where **priorities** for future developments can be better identified

Driver Assistance Systems are meant to **improve** road safety by

- influencing traffic exposure
- reducing the probability of crashes
- reducing injury consequences

Distinct phases in the accident process

- pre-crash
- crash
- post-crash

Driver Assistance Systems mainly focused in the **support** provided to the driver

- information
- perception
- convenience
- driver vehicle monitoring

Navigation Systems

- navigation routing
 - location and route guidance
- integrated navigation
 - additional services (signing, warning, or even intervening in the driving process)
- real time traffic and traveler information
 - combine information available to users of traditional navigation systems with real time travel-related information (road surface condition, work zones, congestion, etc.)

Elimination of unnecessary and sometimes dangerous deceleration and acceleration areas

 automated transaction systems (electronic toll collection)

Driver Performance Monitoring Systems

- driver health monitoring
 - assess several parameters of the driver's health and combines the results to estimate the current health level of the driver
 - if it appears to be below certain pre-selected "safe" levels the driver and possibly some external entity are notified (e.g. doctor, police)

Vehicle Status Monitoring Systems

- tachograph recording
- engine condition information services (e.g. oil pressure, tire inflation pressure, etc.)

Smart Restraint Systems

- vehicle restraint systems (EN1317)
- passive safety of support structures for road equipment (EN 12767)

Alerting Systems

- alert emergency services
 (e.g. police, ambulance, fire brigades, highway patrols)
- dedicated support services
 - troubled drivers get connected automatically

Classification based on Supported Levels of Driver Tasks

Tactical Operational

Longitudinal Control Systems

- intelligent speed adaptation (ISA)
 - external speed recommendations
 - automatic speed reduction function (directly, or indirectly by managing signalization)
- adaptive cruise control (ACC)
 - senses the presence and relative speed of moving vehicles ahead and adjusts the vehicle's speed accordingly

Lateral Control Systems

- road and lane departure collision avoidance
 - warning and control assistance to the driver (through lane or road edge tracking and by determining the safe speed for the road geometry in front)

- lane change and merge collision avoidance
 - detect and warn the driver of vehicles and objects in adjacent lanes
 - particular valuable during lane change or merging maneuvers

General Vehicle Control Systems

- automatic stop-and-go
 - significant safety benefits in hazardous situations or frequent stop-and-go conditions (e.g. congestion)
- platooning
 - lower level of maturity
 - each vehicle travels keeping a constant headway from the preceding

Collision Avoidance Systems

- rear end collision avoidance
 - senses the presence and speed of vehicles and objects in the vehicle's lane of travel and provides to minimise the risk of collisions
- obstacle and pedestrian detection
 - warning of driver when pedestrians or obstacles are in close proximity to the driver's path
- intersection collision warning
 - utilize a cooperation of vehicle and infrastructure
 - mostly beneficial at railway crossing areas

Operational Levels of Driver Tasks

Augment Driver's Perception

- vision enhancement systems
 - headlight design
 - blind spot detection
 - parking aids
 - etc.
- road surface condition info
 - collect and analyze data using vehicle-mounted or fixed infrastructure road sensors

Operational Levels of Driver Tasks

Driver Convenience Systems

- driver identification
 - adjust seat, steering wheel, mirrors, etc.
- hands-free interfaces and remote controls

Conclusions

The specific contribution of driver assistance systems is still under consideration and research

- some systems present a net potential for road safety improvement
- some others have an effect mainly on traffic efficiency improvement

There is a need for **"intelligent" roads** that will support and cooperate with the "intelligent" vehicles

More and more systems tend to **connect** and **collaborate** with **external systems**

In every case the **safety** of the **driver** as well as the **vehicle passengers** is the overall goal

International Conference "Artificial Intelligence, Intelligent Transport Systems" 25-28 May 2016, Brest, Belarus

A Classification of Driver Assistance Systems

George Yannis, Professor Costas Antoniou, Associate Professor John Golias, Professor Stergios Mavromatis, Assistant Professor

National Technical University of Athens Department of Transportation Planning and Engineering

