The impact of cognitive impairments on accident risk

Dimosthenis Pavlou¹, Eleonora Papadimitriou¹, Panagiotis Papantoniou¹, George Yannis¹, Sokratis G. Papageorgiou²

¹Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece
²Attikon University Hospital, University of Athens, Medical School, Behavioral Neurology and Neuropsychology Unit, Athens, Greece
Outline

• Introduction
• Objectives
• Methodology
• Data and analysis methods
• Results
• Conclusions - Discussion
Driving requires the ability to receive sensory information, process the information, and to make proper, timely judgments and responses.

Various motor, visual, cognitive and perceptual deficits can affect the ability to drive and lead to reduced driver fitness and increased accident risk.

More specifically, diseases affecting a person's brain functioning may significantly impair the person's driving performance.
Parameters associated with driving performance are reaction time, visual attention, speed of perception and processing, and general cognitive and executive functions.

Driver distraction is estimated to be an important cause of vehicle accidents, and when combined with a brain pathology it can lead to significant deterioration in driving performance.

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Objectives

- The analysis of the **accident risk** of drivers with **cognitive impairments** due to brain pathologies, through a large driving simulator experiment and
- The investigation of the **impact of driver distraction** on the accident risk
- The brain pathologies examined include early **Alzheimer’s disease** (AD), early **Parkinson’s disease** (PD), and **Mild Cognitive Impairment** (MCI)
- Groups of patients are compared to a **control group** with no brain pathologies of similar age, driving experience and education

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Experiment Design

- **Distract** and **DriverBRAIN** research projects
- **Neurologists** - Medical/neurological assessment:
 - administration of a full clinical medical, ophthalmological and neurological evaluation
- **Neuropsychologists** - Neuropsychological assessment:
 - administration of a series of neuropsychological tests and psychological - behavioural questionnaires to the participants which cover a large spectrum of Cognitive Functions
- **Transportation Engineers** - Driving at the simulator

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Driving simulator

- Concerns the **assessment of driving behaviour** by means of programming of a set of driving tasks for different driving scenarios
- **Quarter-cab driving simulator** manufactured by the FOERST Company
- **3 LCD wide screens** 42” (full HD: 1920x1080 pixels) - total F.O.V. 170 degrees
- **Validated** against a real world environment

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
“Driving at the simulator assessment”

• 1 practice drive (usually 15-20 minutes)
• 1 rural route (2,1km long, single carriageway, 3m lane width)
• 1 urban route (1,7km long, at its bigger part dual carriageway, 3.5m lane width)

• 2 traffic scenarios for each route:
 • Q_L: Moderate traffic conditions ($Q=300$ vehicles/hour)
 • Q_H: High traffic conditions ($Q=600$ vehicles/hour)

• 3 distraction conditions for each route:
 • Undistracted driving
 • Driving while conversing with a passenger
 • Driving while conversing on a hand-held mobile phone

• 2 unexpected incidents occur during each trial:
 • Sudden appearance of an animal on the roadway
 • Sudden appearance of a child chasing a ball on the roadway or of a car suddenly getting out of a parking position.

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Sample Scheme

125 participants (all more than 55 years of age and of similar demographic characteristics):

- **34 Healthy Controls** (aver. 64.1 y.o., 25 males)
- **91 Patients** (aver. 71.2 y.o., 59 males):
 - 43 MCI patients (aver. 70.1 y.o.)
 - 28 AD patients (aver. 75.4 y.o.)
 - 20 PD patients (aver. 66.1 y.o.)

<table>
<thead>
<tr>
<th></th>
<th>“MCI, AD, PD Patients” group</th>
<th>“Control” group</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean±SD</td>
<td>71.2±7.2</td>
<td>64.1±6.6</td>
<td>0.122</td>
</tr>
<tr>
<td>N, M/F (Gender)</td>
<td>91, 59/32</td>
<td>34, 25/9</td>
<td>0.141</td>
</tr>
<tr>
<td>Driving experience, y, mean±SD</td>
<td>41.3±5.8</td>
<td>38.7±2.8</td>
<td>0.271</td>
</tr>
<tr>
<td>Days/week, median (range)</td>
<td>4 (2-7)</td>
<td>5 (2-7)</td>
<td>0.359</td>
</tr>
<tr>
<td>Kilometers driven/week³, median (range)</td>
<td>3 (2-5)</td>
<td>3 (2-5)</td>
<td>0.416</td>
</tr>
<tr>
<td>Accidents (2 years) - reported, median (range)</td>
<td>0 (0-0)</td>
<td>0 (0-0)</td>
<td>1.000</td>
</tr>
<tr>
<td>Education, y, mean±SD</td>
<td>12.1±3.5</td>
<td>13.5±2.2</td>
<td>0.812</td>
</tr>
<tr>
<td>Simulator sicknessb - reported, median (range)</td>
<td>0.23 (0-3)</td>
<td>0.18 (0-3)</td>
<td>0.726</td>
</tr>
</tbody>
</table>

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Results - Overview

- We examined and compared the accident risk of:
 - 4 examined groups (Controls vs MCI vs AD vs PD)
 - in 2 driving areas (Rural vs urban)
 - in 2 traffic volumes (Moderate vs high traffic)
 - in undistracted condition at first
 - and then in 3 distraction conditions (No distraction vs Conversation with passenger vs Mobile phone use)
- Regression analysis by generalized linear modeling (GLM) techniques

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Results - Accident risk GLMs

- AD participants in all 4 driving conditions had **significantly higher accident risk** by more than 15% compared to healthy controls of similar demographics.

- PD participants had significantly higher accident risk than the controls **only in urban area in high traffic volume** (the most complex driving environment of all four).

- MCI patients didn’t have significant differences with the control group in rural road, but on the other hand they **had higher accident risk in urban driving environment**.

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Results - The effect of distraction

- Mobile phone use had a **detrimental impact on the accident risk** of all patient groups.
- Conversation with passenger had significant impact on the accident risk in urban area for PD group.
- MCI drivers’ accident risk was **more than 20%** while conversing through mobile phone.
- The accident risk of AD drivers was **43%(!)** and of PD drivers was **38%** in rural area while conversing through mobile phone.

Dimosthenis Pavlou, National Technical University of Athens, Greece, dpavlou@central.ntua.gr
Conclusions - Discussion 1/2

- The presence of a brain disease had a **detrimental impact on accident risk** and especially for the AD group who crashed approximately **1 out of 5 incidents**
- The **traffic volume** didn’t have any significant effect on the accident risk
- **Urban area leads to increased** accident risk for the group of patients with brain pathologies (especially for the PD patients)
- The **control group seemed unaffected** regarding their accident risk when being distracted
- The **use of the mobile phone had a deleterious effect** on the accident risk of all three groups of patients in almost every examined condition
Conclusions - Discussion 2/2

• AD drivers had the worst “accident risk profile” followed by the PD group but only in urban area which constitutes a more complex driving environment. MCI group had an overall lower accident risk compared to AD and PD groups, but not compared to the healthy drivers.

• Observations of considerable practical importance;
 • provide quite useful information for the development of policies that aim at reducing the risk for car accidents and at improving aspects of driving performance (restrictive measures, training and licensing, information campaigns, medical and neuropsychological monitoring), especially in a sensitive group of car drivers, such that of drivers with MCI, AD or PD.
The impact of cognitive impairments on accident risk

Dimosthenis Pavlou¹, Eleonora Papadimitriou¹, Panagiotis Papantoniou¹, George Yannis¹, Sokratis G. Papageorgiou²

¹Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece
²Attikon University Hospital, University of Athens, Medical School, Behavioral Neurology and Neuropsychology Unit, Athens, Greece