Developing the European Road Safety Decision Support System

P. Thomas, A. Filtness, G. Yannis, E. Papadimitriou, A. Theofilatos, H. Martensen, K. Diependaele

Co-funded by the Horizon 2020 Framework Programme of the European Union
SafetyCube concept

• Problem
 – *Evidence based road safety policies are becoming more usual and there is much better availability of national data to describe the problem areas*
 – *Effective road safety policies need good information about accident risk factors and about measures*
 – *Impact studies are typically used to assess viability of road safety measures*
Accessing the evidence base

• Much of the evidence on risks and measures is in the research literature – how can it be brought together?
• How can we assess transferability of measures from one country to another?
• How can the available information and data be synthesised?
Challenges of the evidence based approach

• Do we have a comprehensive method to identify risks and measures?
 – *Road, road users and vehicles*
• How do we estimate the likely casualty reduction of a measure that has not been introduced to the real-world?
• Do we have a comprehensive method to evaluate cost-effectiveness?
• How do we handle the situation where there are many measures of effectiveness but they disagree?
What is a risk?

- “Risk factor” denotes any factor that contributes to accidents or injuries.
- There are risk factors related to all elements of the road system and the interactions between these elements.
- The importance of a risk factor can be defined as the size of the contribution it makes to accidents or injuries.
What is a measure?

• A measure is any action intended to reduce the numbers of accidents or injuries.
 – *May reduce the risk of a crash*
 – *May reduce the risk of injury*
 – *May reduce exposure to risk*
Example: taxonomy of infrastructure risk factors and measures

More than 90 risk factors and 95 measures in 15 infrastructure areas

Exposure
- Traffic flow
- Traffic composition

Road safety management
- Road safety audits, inspections etc.
- Blackspots treatment
- Speed management

Horizontal alignment
- Road curvature (curve radius, curve frequency, transition curves etc.)

Vertical alignment
- Gradient
- Vertical curvature (sight distance)

Cross-section
- Superelevation, cross-slopes
- Lanes (number, type, width)
- Shoulder (type, width)
- Median / barrier

Roadside
- guardrails, obstacles, visibility
- Sidewalks, cycle lanes

Road surface
- Friction
- Uneven surface
- Oil, leaves, ice, snow etc.

Junctions alignment
- Roundabouts
- Interchanges & ramps
- At-grade junctions
- Channelization (left turn lanes, traffic islands)
- Rail/road crossings

Traffic control
- Speed (speed limits, section control, speed humps)
- Traffic signs
- Delineation and Road markings
- Traffic signals (installation, timing)
- ITS (VMS, V2I)

Lighting

Weather

Workzones
Methodology - Guidelines and tools

- A taxonomy of study designs

- Different estimators of effects
 - Crash Modification Factor (CMF)
 - Absolute difference
 - Regression coefficient / slope
 - Odds ratios
 - Accident rates ratios
Coding template and database

- A template for coding research studies and existing results (excel)
- A template for summarising results / meta-analysing
- The templates of coded studies will undergo a thorough checking and debugging process, in order to be eventually stored in a relational database, which will serve as the back-end of the DSS
DSS-Analysis of user needs

- Stakeholders from government, industry, research, and user associations.
- The DSS should be suitable for use by a wide range of end users, not be limited to EU policy makers, but also local authorities.
- The DSS should have the following characteristics:
 - *include robust data which allow for critical analysis and transparency*
 - *access to the studies used and to all results as well*
 - *information of the best quality studies and recommendations*
Progress to date

- **Wealth of risks, countermeasures and studies** related to behaviour, road infrastructure and vehicle (CMF approach).
- Already analysed approx. 500 studies, and many more in progress.
- Updated more than 20 existing meta-analyses, about 65 more in progress.
- The design of the DSS is finalized and the first static prototype of the DSS will be available by the end of June 2016.
- The DSS testing phase (with test tables) will be ready in August 2016.
- The DSS Pilot Operation will start on September 2016.
- The final opening of the DSS will start on September 2017 and will be constantly updating from April 2018 and onwards.

ESAR Conference, Hannover, 9th - 10th June, 2016
Contact

- www.SafetyCube-project.eu
- Pete Thomas
- Professor of Road and Vehicle Safety
- p.d.thomas@lboro.ac.uk
- Smart and Safe Mobility Research Cluster
- Loughborough University
- Leicestershire
- LE11 3TU
- United Kingdom
- Tel: +44 (0)1509 226931