6th International Naturalistic Driving Research Symposium (NDRS)
8-9 June 2017, The Hague, The Netherlands

Monitoring distraction through smartphone naturalistic driving experiment

George Yannis
Professor

Dimitrios I. Tselentis
Ph.D Candidate, OSeven Analyst

Eleni I. Vlahogianni
Assistant Professor

Anastasia Argyropoulou
Undergraduate Student

National Technical University of Athens
Department of Transportation Planning and Engineering
Scope

The development of the OSeven Smartphone application (www.oseven.io/) was initiated by the need for collecting and analysing driving behaviour data:

- from naturalistic driving conditions
- of a large-scale
- through cost effective solutions
- and transmit them in real time

Started in late 2014 and continuously progressing.
Past limitations

Limiting barriers existed so far:

- Mobile phone technology
- High cost of:
 - In-vehicle data recording systems (e.g. OBD)
 - Data transmission plans
 - Cloud computing
- Low penetration rate of smartphones and social networks
- Inability to manage and exploit Big Data

...have now been eliminated.

Current technological advances make it substantially easier for experts to collect and exploit data easier and more accurately through mobile phones.
Data flow (1/2)

- A mobile App recording user’s behaviour using mobile phone sensors (automatic start / stop)

- A variety of APIs to read sensor data recorded and temporarily store it to mobile phone

- Data transmission from the mobile App to the central database via an appropriate communication channel such as:
 - Wi-Fi network (online)
 - Cellular network such as a 3G/4G network (online)
 - Bluetooth (offline)

Source: OSeven Telematics
Data flow (2/2)

- Data is stored in a sophisticated database where managed and processed

- Indicators result from the mobile phone data process using
 - Machine learning algorithms
 - Big data mining techniques

- Results Visualization
- Mobile App
- Web Portal

Source: OSeven Telematics
Smartphone data

Indicatively, mobile phone integrates technology sensors:
- Accelerometer*
- Gyroscope*
- Magnetometer
- GPS (speed, course, longitude, latitude)

- Fusion Data provided by iOS and Android:
 - Yaw, pitch, roll
 - Linear acceleration*
 - Gravity*

*(x, y, z components)

Recording at a minimum frequency of 1Hz
Risk exposure indicators

- Total distance (mileage)
- Driving duration
- Type(s) of the road network used (given by GPS position and integration with map providers e.g. Google, OSM)
- Time of the day driving (Rush hours, Risky hours)
- Weather conditions
- Trip purpose

combined with other data sources (speed limits and detailed accident maps).
Driving behaviour indicators

- Speeding (duration of speeding, speed limit exceedance etc.)
- Number and severity of harsh events
- Harsh braking (longitudinal acceleration)
- Harsh acceleration (longitudinal acceleration)
- Harsh cornering (angular speed, lateral acceleration, course)
- Driving aggressiveness (e.g. braking, acceleration)
- Distraction from mobile phone use
Additional parameters

In more advanced setups, when sufficient amount of data is available, new additional or composite parameters might be used such as:

- seat belt use
- alcohol consumption
- vehicle maintenance

Eco-driving could also be exploited in the future as it is proved to have a significant correlation with crash risk since fuel consumption is strongly correlated with aggressive and speeding driving.
Sample

Smartphone data driving experiment:

- 100 drivers
- 4 months
- 18,850 events

Descriptive Statistics:

- Highest percentage of time driving over the speed limit is found to be on urban road network
- Highest mobile usage is found to be on urban road network
A linear regression model to investigate the driving characteristics influencing the number of harsh events per distance travelled. Parameters found to influence:

- mobile phone usage
- trip duration
- speed standard deviation
- average speed limit exceedance
- driving during morning rush hour

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>T</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>.408</td>
<td>.008</td>
<td>54.374</td>
<td>0.000</td>
</tr>
<tr>
<td>Driving during morning rush hour</td>
<td>.050</td>
<td>.007</td>
<td>.051</td>
<td>7.023</td>
</tr>
<tr>
<td>St. Deviation of Speed</td>
<td>-.001</td>
<td>.000</td>
<td>-.023</td>
<td>-2.680</td>
</tr>
<tr>
<td>Average Speed limit exceedance</td>
<td>.193</td>
<td>.024</td>
<td>.068</td>
<td>8.231</td>
</tr>
<tr>
<td>Mobile Usage</td>
<td>.039</td>
<td>.015</td>
<td>.019</td>
<td>2.580</td>
</tr>
<tr>
<td>Duration (hr)</td>
<td>-.163</td>
<td>.009</td>
<td>-.144</td>
<td>-18.943</td>
</tr>
</tbody>
</table>

Dependent Variable: total number of events per kilometres travelled
A binary logistic model to predict the possible use of a mobile phone while driving based on the observation of different driving measures. Parameters found to influence:

- average angular speed
- trip duration
- average percentage of time driving over the speed limit
- driving during morning rush hour
- driving during afternoon rush hour

Variables in the Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Deviation of Speed</td>
<td>.007</td>
<td>.002</td>
<td>8.852</td>
<td>1</td>
<td>.003</td>
<td>1.007</td>
</tr>
<tr>
<td>Driving during morning rush hour</td>
<td>-.209</td>
<td>.042</td>
<td>25.310</td>
<td>1</td>
<td>.000</td>
<td>.811</td>
</tr>
<tr>
<td>Driving during afternoon rush hour</td>
<td>.126</td>
<td>.036</td>
<td>12.140</td>
<td>1</td>
<td>.000</td>
<td>1.135</td>
</tr>
<tr>
<td>Duration (hr)</td>
<td>1.369</td>
<td>.064</td>
<td>461.442</td>
<td>1</td>
<td>.000</td>
<td>3.930</td>
</tr>
<tr>
<td>Average Angular Speed</td>
<td>.117</td>
<td>.006</td>
<td>366.534</td>
<td>1</td>
<td>.000</td>
<td>1.124</td>
</tr>
<tr>
<td>Average percentage of time driving over the speed limit</td>
<td>.646</td>
<td>.138</td>
<td>21.910</td>
<td>1</td>
<td>.000</td>
<td>1.907</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.898</td>
<td>.076</td>
<td>616.145</td>
<td>1</td>
<td>.000</td>
<td>.150</td>
</tr>
</tbody>
</table>

Refers to the Utility function of mobile phone usage = 1
- Distraction originating from smartphone usage has a serious impact on the number of harsh events that occur per kilometre and subsequently on the relative crash risk.

- Data analysis implemented through statistical methods led to the quantification of this impact.

- Mobile phone usage was found to be predictable using driving characteristics such as travel duration, time of the day driving, speeding, etc.
- The quantification of change in driving behaviour can constitute a measure of evaluating driver's performance and thus, it can potentially lead to the implementation of a driving risk model based on:
 - driving behaviour
 - degree of exposure

- It may also contribute towards the practice of evaluating driver's traffic and safety behaviour as well as to classify drivers in different safety categories depending on their relative level of risk
Monitoring driver behaviour through mobile phones makes gradually possible the continuous driver assessment, opening a new great potential for traffic and safety behaviour improvement, used either:

- Independently by the drivers in order to:
 - raise awareness and engagement on safe and eco-driving
 - receive feedback and support on driving performance and risks

- Through customized insurance schemes by correlating driving exposure and behaviour with insurance premiums:
 - pay-as-you-drive (PAYD)
 - pay-how-you-drive (PHYD)
Future challenges (2/2)

- Advanced machine-learning algorithms
- Big data analysis – handling - mining
- Correlation between accidents and driving indicators
- Developing user-friendly Apps for driving recording
- User engagement
- Battery consumption
- Personal data privacy
Monitoring distraction through smartphone naturalistic driving experiment

George Yannis
Professor

Dimitrios I. Tselentis
Ph.D Candidate, OSeven Analyst

Eleni I. Vlahogianni
Assistant Professor

Anastasia Argyropoulou
Undergraduate Student

National Technical University of Athens
Department of Transportation Planning and Engineering