

07-08 December 2017, Patras, Greece

International Conference

SMART CITIES & MOBILITY AS A SERVICE

EFFECTIVENESS OF INTELLIGENT SPEED ADAPTATION, COLLISION WARNING AND ALCOLOCK SYSTEMS ON DRIVING BEHAVIOUR AND SAFETY

ATHANASIOS THEOFILATOS¹, RICARDO NIEUWKAMP², APOSTOLOS ZIAKOPOULOS¹, ELEONORA PAPADIMITRIOU¹, GEORGE YANNIS¹

¹NATIONAL TECHNICAL UNIVERSITY OF ATHENS

²VIAS INSTITUTE, BELGIUM

The SafetyCube project

SafetyCube - Safety CaUsation, Benefits and Efficiency <u>www.safetycube-project.eu</u>

May 2015 - April 2018

Objective: to provide the European and Global road safety community a user friendly, web-based, interactive **Decision Support System (DSS)** to properly substantiate their road safety decisions for measures, programmes, policies and strategies to be implemented at local, regional, national, and European level.

The main contents of the SafetyCube DSS concern:

- road accident risk factors
- road safety measures
- best estimate of effects on casualty reduction
- cost-benefit evaluation
- all related analytic background

International Conference "Smart Cities & Mobility As A Service"

07-08 December 2017

Patras, Greece

HORIZON 2020 FRF DEKRA **FSTTAR** CEESAR ASPE CIDAUT

Risk Factors and Measures

Problem:

- Evidence-based road safety policies are becoming more widespread
- Linking of risks and measures is imperative:
 - Specific effects are required,
 - Current knowledge is dispersed amongst several countries and repositories,
 - Effects are not comparable and reported in dissimilar manners

Solution:

- SafetyCube meets this need by generating new knowledge about risk factors and measures to be integrated in the Road Safety Decision Support System (DSS)
- This knowledge is attained by gathering, assessing and metaanalyzing research

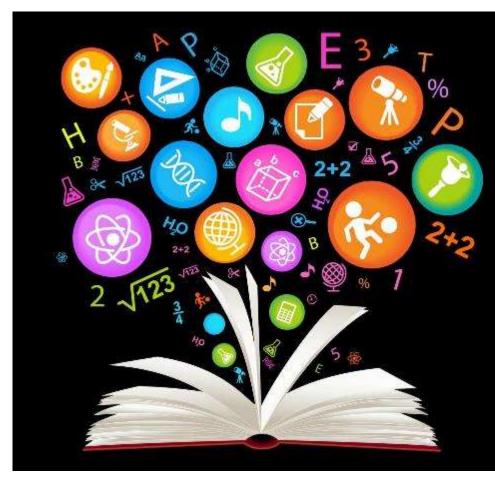
SafetyCube Methodology

- Methodologies and guidelines developed in SafetyCube.
- 1. Creating **taxonomies** of risk factors and measures
- 2. Exhaustive **literature review** and rigorous study selection criteria
- 3. Use of a **template for coding** studies, to be introduced in the DSS back-end database
- 4. Studies analyzed for carrying out **meta-analyses** to estimate the effects of risk factors / measures.
- 5. Compiling **Synopses** summarizing results of risk factors/measures, including a "colour code" denoting their .
- Systematic and case-by-case approach: links between infrastructure, user and vehicle risks
- Hot topics & additional risk factors and measures
- Assessment of the quality of the data / study methods

Challenges and Criteria

Several challenges when examining road safety studies:

- Considerable variations at study design levels
 (e.g. cross-sectional vs. case-control studies etc.)
- Inclusion of all relevant parameters (e.g. different road users, scenarios), topic complexity (e.g. land use regulations)
- Relevant outputs to road safety, quantifiable impacts (e.g. impact on crashes, driver behavioral variables)
- Rigorous criteria for study inclusion:
 - Study year: 1990 or newer
 - Document type: Journal (unless more studies are required)
 - Existing meta-analyses prioritized at all times
 - Good overall quality, verification and transferability of results



Synopses: Concise Knowledge

Every topic adequately studied is summarized in a **Synopsis**:

- Pertinent studies are grouped and assessed
- A relevant analysis is conducted (Meta-analysis conducted when possible, vote-count or review-type analysis alternatively)
- Synopses include assigning a colour code: Ranking of risks and measures
- Synopses contain condensed knowledge and can be used by all road safety stakeholders for reference and planning
- They are considered living documents updateable as research progresses
- Quality control at all stages ensures verified and accurate outcomes

Measures in the Taxonomy

The following measures are present in the vehicle related taxonomy section

Торіс	Subtopic	Measures / Safety Systems		
	Longitudinal control	Collision Warning		
Active safety - ADAS	Longitudinal control	Intelligent Speed adaptation (& Speed Limiter + Speed regulator)		
	Driver assistance	Alcohol Interlock (ALC - alcolock)		

Examined Studies

0

	Author(s); Year; Country;	Method for measure investigation	Outcome indicator
ning	Bueno et al.;2014;France	Absolute Difference	Break reaction time; Time to collision; Maximum deceleration time; Mean deceleration; Driving speed; Task load index of mental effort; Task load index of effort; Task load index of discouragement; Task load index of irritation; Task load index of stress; Task load index of annoyance
Collision warning systems	Chang et al.;2009;Taiwan Jamson et al.; 2008; UK	Absolute difference Absolute difference	Mean speed; Reaction time; Mean of lateral position deviation; Accident rate; Standard deviation of speed Minimum time headway
ision syst	Ruscio et al.; 2015; Switzerland	Absolute difference	Reaction Time; Force on the brake
Coll	Wege et al.; 2013; various	Absolute difference; Percentage change	Distance to lead vehicle; Minimum time headway; Minimum time to collision; Warning length; Immediately looking forward; Duration of glances; Number of glance transitions toward to the down AOI
tion	Adell, E., & Varhelyi, A.;2008; Sweden	Absolute Difference	Irritation score; Stress score; Safety score; Speeding tickets risk score; Speed change score; Driving effort score;
adaptation	Adell et al.;2008; Hungary and Spain	Absolute Difference	Mean speed; Perceived safety performance
d ad	Brookhuis, & de Waard; 1999; Netherlands	Absolute Difference	Proportion of time driving above the limit; Proportion of time driving above the limit+10%
speed	Hjälmdahl et al.; 2002; Sweden	Absolute Difference	Mean speed; Expected decrease in the number of injury accidents; Expected decrease in the number of fatal accidents
jent:	Várhelyi et al.; 2004; Sweden	Absolute Difference	Various mean speeds; Accident rate; Maximum approach speed at intersection; Turning speed at intersection
Intelligent	Várhelyi and Makinen; 2001; Netherlands, Spain and Sweden	Absolute Difference	Mean travel speed; Mean time gaps; Giving way to pedestrians; Giving way to cyclists; Giving way to cars; Mental demand score; Physical demand score; Time pressure score; Performance score; Effort score; Frustration level score; Mean turning speeds at intersection
Alcolock	Bjerre & Kostela; 2008; Sweden	Absolute Proportion	Number of failures when first attempting to start the engine
Alco	Bjerre; 2005; Sweden	Absolute Proportion	Number of failures when first attempting to start the engine; Number of injury crashes reported by the police. The evaluation has been made in an interlock and medical monitoring program after a DWI offence.

Study Analyses Examples

- Study review concluded that:
 - There is an adequate **number** of studies, however;
 - Those studies have not used the same model for analysis but radically different ones.
 - There are different indicators, and even when they coincide they are not measured in the same way.
 - The sampling frames were quite different.
- A vote-count analysis was used for effect quantification for collision warning systems and Intelligent speed adaptation
- For alcolock only a **qualitative** investigation was possible

1	, la	
-	10 5	
24	AND.	

	studies	\uparrow	-	\downarrow	^ *	-	
Mean speed	4	2	11	26	3	21	
Perceived safety performance	1	-	4	-	-	-	
Proportion of time driving above the limit	1	-	-	-	4	4	
Expected decrease in the number of fatal accidents	1	-	-	12	-	-	
Accident rate	1	-	-	1	-	-	
Mean time gaps	1	-	5	-	-	-	
Giving way to pedestrians	1	-	-	-	-	1	
Mental demand score	1	-	-	-	3	-	
Physical demand score	1	-	-	-		-	
Time pressure score	1	-	-	-	1	-	
Performance score	1	-	-	-		-	
Effort score	1	-	-	-	4	-	
Frustration level score	1	-	-	-	4	-	

Result (number of effects)

Tested in

number of

Outcome

definition

Patras, Greece

Result (number of effects)

Without statistical evaluation

Collision Warning Results

Indicative results include:

- -Synopsis colour code: Grey
- Collision warning systems show unclear results in practice
- No statistically significant results on travel speeds, reaction time, force on break etc.
- The majority of studies use simulation and originate from developed countries

Intelligent Speed Adaptation Results

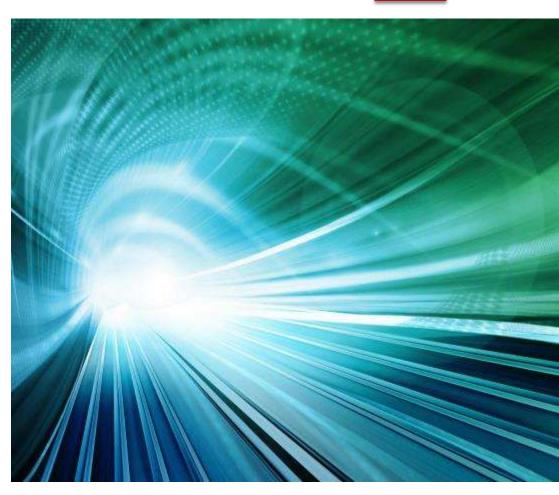
Indicative results include:

- -Synopsis colour code: Light Green
- Intelligent Speed Adaptation systems
 can reduce crash frequency, mean
 speed and speeding driver numbers
- -No statistical modelling for results
- Again, the majority of studies originate from developed countries

Alcohol Interlock Results

Indicative results include:

- -Synopsis colour code: Light Green
- Alcolock systems have **positive impacts** (e.g. engine stops when blood alcohol levels are increased)
- -Studies examined commercial vehicles
- More research is needed on its effectiveness
- –Very few studies (from Sweden); limited result transferability



Conclusions

- Intelligent Speed adaptation appears the most effective measure, followed by alcolock based on examined studies
- There is room for the exploration of more safety-critical variables (crashes, injuries)
- Often detailed road safety data is lacking for more targeted research
- Overall no in-depth statistical modelling or verification, usually descriptive statistics are used
- Therefore, knowledge gaps were identified

International Conference "Smart Cities & Mobility As A Service"

Future Challenges

- Addressing current knowledge gaps on the effectiveness of vehicle-related road safety measures
- Gathering detailed vehicle measure road safety data and performing in-depth analyses is required
- The SafetyCube DSS provides a vehicle for concise standardization and documentation of research results

Continuous research and respective updating of the SafetyCube DSS will lead to a road safety encyclopaedia

07-08 December 2017, Patras, Greece

International Conference

SMART CITIES & MOBILITY AS A SERVICE

EFFECTIVENESS OF INTELLIGENT SPEED ADAPTATION, COLLISION WARNING AND ALCOLOCK SYSTEMS ON DRIVING BEHAVIOUR AND SAFETY

ATHANASIOS THEOFILATOS¹, RICARDO NIEUWKAMP², APOSTOLOS ZIAKOPOULOS¹, ELEONORA PAPADIMITRIOU¹, GEORGE YANNIS¹

¹NATIONAL TECHNICAL UNIVERSITY OF ATHENS

²VIAS INSTITUTE, BELGIUM

