Background
- Driving efficiency evaluation
- Extremely significant in road safety
- Identify driving risk parameters
- Quantify their influence on traffic risk
- Several methodologies proposed for driving behavior data collection and analysis.
- Most significant parameters associated with driving risk:
 - Speeding (SP)
 - Mobile phone usage (MU)
- Driver's efficiency on a microscopic level has not been studied by making use of DEA techniques.

Main objective
- Provide a solid framework for the comparative evaluation of driving efficiency based on Data Envelopment Analysis (DEA).

Methodology
- Input-oriented DEA:
 - Inputs minimization (recorded driving metrics)
 - Maintain the number of outputs (recorded distance)
- Drivers are considered Decision Making Units (DMUs).
- Provide a relative efficiency measure (EΩ) to compare different drivers based on driving performance.
- All variables are considered and quantitative.
- Drivers should reduce their mileage and the frequency of driving risk characteristics.
- Python coding:
 - Data aggregation
 - DEA models development.

Results
- **Table 1:** Variables recorded during the experiment
- **Table 2:** Driving characteristics of efficiency groups per road type and overall

Conclusions - Discussion
- Most efficient drivers lie on the efficiency frontier and act as peers for the rest.
- Classification of the driving sample based on drivers' comparative efficiency.
- Methodology to estimate the optimal level of inputs and outputs for each driver to become efficient.
- Most common inefficient driving practices are identified (aggressive, risky driving etc.).
- Results could be exploited:
 - By a smartphone app to provide feedback on the driving characteristics of each driver.
 - For insurance pricing based on driving usage and characteristics.
 - Center around larger driving samples.
 -克服DMUs sensitivity to outliers and drivers with zero input attributes. Compare results of per trip and per driver analysis of each driver.

Acknowledgement
The authors would like to thank O2Sense Telematics, for providing all necessary data to accomplish this study.