Safety effects of infrastructure road safety measures

Eleonora Papadimitriou, Apostolos Ziakopoulos, Athanasios Theofilatos, George Yannis, NTUA, Greece
Klaus Machata, Robert Bauer, Severin Stadlbauer, Aggelos Soteropoulos KfV, Austria
Stijn Daniels, VIAS Institute, Belgium
Rune Elvik, TØI, Norway
Risk Factors and Measures

Problem:

• Evidence-based road safety policies are becoming more widespread
• Linking of risks and measures is imperative:
 – Specific effects are required
 – Current knowledge is dispersed amongst several countries and repositories
 – Effects are not comparable and reported dissimilarly

Solution:

• SafetyCube meets this need by generating new knowledge about risk factors and measures to be integrated in the Road Safety Decision Support System (DSS) www.safetyscube-project.eu
• This knowledge is attained by gathering, assessing and meta-analyzing research
SafetyCube Methodology

1. Creating taxonomies of road safety measures
2. Exhaustive literature review and rigorous study selection criteria
3. Use of a standardized template for coding studies
4. Carrying out meta-analyses to estimate the effects of measures.
5. Drafting Synopses summarizing results of measures, including a “colour code” denoting their impacts.

- Stakeholders: Hot topics & additional risk factors and measures
- Rigorous assessment of the quality of the data / study methods
- Systematic and case-by-case approach:
 - links between infrastructure, user and vehicle risks and measures

16.04.2018
SafetyCube Infrastructure Taxonomy

The Taxonomy endeavors to:

• Capture all elements of road safety studied worldwide:
 – 11 infrastructure elements including
 – 24 general measures including
 – 94 specific measures

• Examine parameters on a road safety measure basis

• Link scientifically researched appropriate measure(s) in a case-by-case approach with risk factors
Challenges and Criteria

• Several challenges when examining road safety studies:
 – Considerable variations at study design levels (e.g. cross-sectional vs. case-control studies etc.)
 – Inclusion of all relevant parameters (e.g. different road users, scenarios), topic complexity (e.g. land use regulations)
 – Relevant outputs to road safety, quantifiable impacts (e.g. impact on crashes, driver behavioral variables)

• Rigorous criteria for study inclusion:
 – Study year: 1990 or newer
 – Document type: Journal (unless more studies are required)
 – Existing meta-analyses prioritized at all times
 – Good overall quality, verification and transferability of results
Synopses: Concise Knowledge

Every topic adequately studied is summarized in a Synopsis:

• Pertinent studies are grouped and assessed
• A relevant analysis is conducted (Meta-analysis when possible, vote-count or review-type analysis alternatively)
• Synopses assign a colour code: Ranking of measures
• Quality control at all stages ensures verified and accurate outcomes
Main Results (1/3)
For Road Safety infrastructure measures:
- 48 synopses have been compiled
- Most include existing meta-analyses, 2 include new meta-analyses
- 16 measures -> **Green** (consistent evidence of a positive effect on road safety)
- 19 measures -> **Light Green** (probably effective - likely positive effect on road safety)
- 14 measures -> **Grey** (unclear – no clear conclusions)
- Contributions by 9 SafetyCube partners
Main Results (2/3)
For Road Safety infrastructure measures:
• Overall 250 studies were coded
• 160 studies had ‘before-after’ designs (>50%)
• Studies included over 1800 road safety effects
• Examined outcomes (times examined):
 – Accident rate/risk (96)
 – Vehicle speed (58)
 – Behaviour of drivers/pedestrians (52)
 – Injury or Casualty rate/risk (38)
 – Conflicts (5)
 – CMF (4)
 – Other (3)
Main Results (3/3)

To determine color code, affected road safety outcomes were examined:

• Crash risk: number of crashes per unit of exposure
• Crash frequency
• Crash severity of the injuries sustained by crash casualties
• Measures examined by road type applicability (with overlap):
 – Motorways (25 measures)
 – Rural Roads (39 measures)
 – Urban roads (38 measures)
Vote Count Analyses Results

[Graph depicting vote count analyses results]
Conclusions

• Implementation of a standardized methodology
• Exhaustive scope for all road safety aspects from many databases
• Meta-analyses utilization: concise and comprehensive knowledge
• High-Quality, recent studies have been exploited
• Prioritizing European Studies for transferability
• Ranking of road safety infrastructure measure effectiveness
Integration to the DSS

• Addressing current knowledge gaps on the effectiveness of infrastructure road safety measures

• The SafetyCube DSS provides a means for concise standardization-documentation of research results

• Continuous research and respective updating of SafetyCube DSS will lead to a road safety encyclopaedia

• Available at: https://www.roadsafety-dss.eu
Contact

Professor George Yannis, National Technical University of Athens, Greece,
The SafetyCube DSS https://www.roadsafety-dss.eu, SafetyCube@lboro.ac.uk
The SafetyCube project https://www.safetycube-project.eu/