Can light engineering measures make a difference?

Ziakopoulos A., Theofilatos A., Papadimitriou E., Yannis G., NTUA, Greece
Botteghi G., Macaluso G., Università degli Studi di Firenze, Italy
Diamandouros K., Arampidou K., ERF, Belgium
Introduction

Road environments are already heavily developed

• Building new infrastructure is not a solution!
• Solutions should be less obstructive
• Do not interfere with existing infrastructure elements
• Instead: Seek management and additions in the road environment
Aims and Objectives

- The examination of several “light engineering” measures
- Assessment of their impact on road safety of 5 specific measures:
 - signage installation/improvement for workzones
 - road markings implementation
 - installation of chevron signs
 - edgeline rumble strips
 - traffic sign installation/traffic sign maintenance
Methodology

• A clearly defined methodology was developed
• Carried out within the SafetyCube project
 – rigorous literature search
 – analysis of studies in terms of design
 – methods and limitations and synthesis of findings and meta-analyses
• Studies were selected and analyzed in a set taxonomy consisting of light engineering measures
• Analysis options: meta-analysis, vote-count, qualitative review
Delineation and Road Markings

- Qualitative review-type analysis
 - Mostly positive effects on road safety

- A meta-analysis showed significant correlations with mean speeds

- Positive effects of repainting the barrier lanes on vehicle encroachments

- A few unclear effects for the effect of line and number markings on median speeds

- Some speed increases due to a sense of security to drivers
Signage installation and improvement for workzones

- Qualitative review-type analysis
- Most studies reported speed reductions
- Mixed results also present for speed limit compliance rate
- Lack of statistical tests in a number of studies
- Positive effects on lane distribution
- Positive impacts on road safety overall
Chevron signs

- Vote-count analysis
- Significant reductions in
 - crash numbers
 - speed due to chevrons and full-post chevrons
 - vehicle lateral lane position
- Beneficial effects on speed both for Flashing Yellow (FY) chevrons and Flashing Yellow (FY) signposts
- The combination of FY chevrons and FY curve signs was found to have a small and inconsistent effect

<table>
<thead>
<tr>
<th>Outcome definition</th>
<th>Tested in number of studies</th>
<th>Result (number of studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash Reduction</td>
<td>2</td>
<td>↑ - - 1</td>
</tr>
<tr>
<td>Mean Speed</td>
<td>4</td>
<td>- - 4</td>
</tr>
<tr>
<td>Mean Lateral position</td>
<td>2</td>
<td>- - 2</td>
</tr>
<tr>
<td>Exceeding speed limit vehicles</td>
<td>1</td>
<td>- 1 -</td>
</tr>
<tr>
<td>Behavioural Safety Indicators [Simulation]</td>
<td>1</td>
<td>- - -</td>
</tr>
</tbody>
</table>

Total Studies = 7
Edgeline rumble strips

- Vote-count analysis

- An improvement in road safety both for:
 - single treatments (edgeline rumble strips only)
 - combined treatments (edgeline rumble strips and widening of shoulder width)

- Reduction in all single-vehicle run-off road crashes

- The presence of edgeline rumble strips does not affect severe crash occurrence

Outcome definition

<table>
<thead>
<tr>
<th>Outcome definition</th>
<th>Tested in number of studies</th>
<th>↑</th>
<th>↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Crashes</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Severe crashes</td>
<td>4</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Crash severity probability</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Lateral position Indicators</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Encroaching onto or across edgeline</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Passing manoeuvre indicators</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Studies = 5
Traffic sign measures

- Qualitative review-type analysis

- Reduction of the displayed speed limit has a limited impact on crashes (including injury and fatal crashes).

- Significant decrease in mean speed and for all the different speed exceedance intervals.

- Sign treatment shifts motor vehicles away from the rightmost lane positions.

- Fluorescent SYG (Strong Yellow Green) warning signs → marginal improvements in perceived safety at crossing sites.
Conclusions

- Assessment of several light engineering measures
 - evaluating their impact on road safety
 - based on its documented impacts in synopses
 - various outcome indicators (e.g. crash counts, mean speed, more indirect behavioural effects)

- Light engineering measures are beneficial for road safety.

- Findings are particularly useful for developing road safety policy measures.

- All results available at: https://www.roadsafety-dss.eu.
Contact

Apostolos Ziakopoulos
email: apziak@central.ntua.gr
website: www.nrso.ntua.gr/apziak