

solutions for society, economy and environment

INVESTIGATING WHICH FACTORS AFFECT LATERAL POSITION VARIABILITY THROUGH A DRIVING SIMULATOR EXPERIMENT

Poster Number: 11075

P. Papantoniou, D. Pavlou, G. Yannis, National Technical University of Athens, Greece

C. Antoniou, Technical University of Munich, Germany

OVERVIEW

- Considering that inappropriate lateral positioning is a key accident contributory factor, lateral control measures are some of the most commonly used driving behaviour metrics
- Lateral control measures assess how well drivers maintain vehicle position within a lane
- The objective of the present research is to quantify the effect of several risk factors including distraction conditions, driver as well as road environment characteristics on lateral position variability through a driving simulator experiment

METHODOLOGY

- The driving simulator consisted of 3 LCD wide screens 42", driving position and motion base, total field of view 170 degrees, validated against a real world environment
- The experiment started with a **practice drive** (10-15 min) until the participant fully familiarized with the simulation environment

RESULTS

The distribution of driving trials is presented per area type and order of trials

A significant number of participants came up with simulator sickness symptoms during the experiment and did not manage to complete all the trials

Variables	Estimate	Std. Error	t value	Pr(> t)
Intercept	0,23	0,05	4,41	< 0,000
Distraction - Cell phone	0,07	0,03	2,30	0,022
Age group - Middle Aged	0,13	0,06	2,25	0,027

- Afterwards, the participant was asked to drive two sessions (approximately 20 minutes each). Each session corresponded to a different road environment:
- a rural route, single carriageway, zero gradient, mild horizontal curves
- an urban route, at its bigger part dual carriageway, separated by guardrails. Two traffic controlled junctions, one stop-controlled junction and one roundabout were placed along the route

- During each trial, 2 unexpected incidents were scheduled to occur:
 - sudden appearance of an animal on the roadway
 - sudden appearance of a child chasing a ball on the roadway or of a car suddenly getting out of a parking position

Age group - Older	0,10	0,06	1,79	0,074
Area type - Urban	1,29	0,03	49,71	< 0,000
Gender - Male	-0,11	0,05	-2,35	< 0,021
Random effect				
By Person ID (stdev)	0,18			
Summary statistics				
AIC	839,16			
Log-restricted-likelihood	-411,58			

The random effect contributes significantly to the fit of the model

CONCLUSIONS

- Results confirm the initial hypothesis that cell phone use has a negative effect on driving performance and road safety as it was proved that while talking on the cell phone lateral position variability was significantly increased
- Conversation with the passenger did not significantly affected the position of the vehicle
- Female middle aged/older drivers while driving at urban areas achieved the highest lateral position variability

Sample consisted of 95 participants counterbalanced per gender and age group (young, middle-aged, older)

ACKNOWLEDGEMENTS

This paper is implemented within the framework of "IKY Fellowships of Excellence for Post-graduate studies in Greece - Siemens Program

www.traconference.eu

