

solutions for society, economy and environment

IMPACT OF MOBILE PHONE USE ON DRIVING PERFORMANCE: FINDINGS FROM A SIMULATOR STUDY 10573

Maria, Linardou, National Technical University of Athens, Greece Ioanna, Spyropoulou, National Technical University of Athens, Greece Dimosthenis, Pavlou, National Technical University of Athens, Greece

George, Yannis, National Technical University of Athens, Greece

INTRODUCTION

Although traffic casualties, mainly seriously injured and killed, have been reduced significantly over the past years, further reduction is required to reach the goals set by the EU and the national strategies. Driver distraction plays a dominant role in road accidents where the driver is at fault, and may arise from sources inside or outside of the vehicle. One such source is mobile phone use while driving, which results in both physical and cognitive distraction, and has been found to increase accident probability by three or four times.

The objective of the present study is to analyse the effect of mobile phone use while driving, considering different mobile phone use modes (handheld, handsfree and speaker mode) and at the same time different environments (urban vs rural) on specific elements of the driving behaviour, employing discrete choice models.

nments)

2

ction

mode

Probit

METHODOLOGY

Driving Simulator Questionnaires

DRIVING SCENARIOS

The experiment consisted of 6 different driving scenarios (3.5 km each one). 2 km were driven while having a conversation on the mobile phone and rest were driven with no distraction. Out of the six drives three were in a **rural** road environment and three in an **urban** one.

Three different ways of using the mobile phone were investigated:

Parameters estimates of reaction	Parameters estimates of reaction time					
Variables	Estimate	t- value				
(Intercept)	1.229	3.197				
Distraction (HH)	0.508	2.414				
Distraction (HF)	0.512	2.432				
Distraction (Sp)	0.627	2.942				
Road environment (Urban)	0.461	3.087				
Frequency of mobile phone use while driving in rural area (rarely/sometimes)	-1.211	-3.190				
Frequency of mobile phone use while driving in rural area (often /always)	-1.341	-3.486				
Frequency of over speeding in rural area (often/always)	-0.415	-2.063				
Frequency of over speeding in urban area (always)	-1.531	-3.888				
Age (25-45)	-0.330	-1.825				
Gender (Female)	1.269	5.378				
Car owner (No)	1.173	3.005				
Road accident in last 3years (No)	0.994	4.673				
mu_1	2.183	13.927				
Sigma	1.752	7.981				
Free parameters	390					
Degrees of freedom	15					
Initial log-likelihood	-348.854					
Final log-likelihood	-238.036					
AIC	506.072					

- Handheld (HH)
- Handsfree (with wired headphones) (HF)
- Speaker mode (Sp)

To measure drivers' reaction time, a "STOP" sign appeared (twice in each scenario) at the windscreen at different points along the route, and drivers were instructed to make a sudden stop upon its appearance.

SAMPLE CHARACTERISTICS

50 adults, 32 men and 18 women, between the ages of 20 to 60 years old (mean value 31 years old) participated in the simulator experiment.

All of the participants held a driver's license and owned a mobile phone device which they used during the experiment.

ANALYSIS

Ordered probit models with random effects were developed for each of the investigated parameters. The examined variables were classified into three categories: low, normal and high. Maximum speeds in the urban and rural area differed greatly, and hence, further analysis in the two different road environments was conducted.

	Investigated Parameters					
Classification	Maximum Speed (km/h)			Reaction	St. Dev of	
	All roads	Urban	Rural	Time (sec)	Lateral Position	
Low	< 60	< 50	< 70	< 0.88	< 0.23	
Medium	60 - 80	50 – 70	70 - 85	0.88 - 1.00	0.23 – 0.30	
High	> 80	> 70	> 85	> 1.00	> 0.30	

CONCLUSIONS

 \checkmark HH and Sp conversation result in a reduction of the <u>maximum driving speed</u>. \checkmark In rural areas both HH and Sp conversation affect drivers' maximum speed, with HH conversation exhibiting the highest affect.

 \checkmark In urban areas, only the HH conversation exhibits a reduction of the maximum driving speed.

- \checkmark Drivers exhibit higher reaction times when using their mobile phone. All types of mobile phone use examined, found to affect reaction time significantly. ✓ HH, HF and Sp conversation cause higher levels of standard deviation of the lateral position.

 \checkmark <u>Increased familiarity of mobile phone use</u> while driving improves reaction times.

