13th International Conference "Road Safety in Local Communities" Serbia, Kopaonik April 18 – 21, 2018

SAFEFITS - A GLOBAL MODEL AS A TOOL FOR ROAD SAFETY POLICY MAKING

George Yannis¹, Eleonora Papadimitriou¹, Katerina Folla¹ Nenad Nikolic², Eva Molnar²

¹Department of Transportation Planning and Engineering, NTUA, Greece ²UN Economic Commission for Europe, Sustainable Transport Division, Switzerland

Objective

- To develop a macroscopic road safety decision making tool that will assist governments and decision makers, both in developed and developing countries, to decide on the most appropriate road safety policies and measures in order to achieve tangible results.
- Based on work carried out in the framework of the "Safe Future Inland Transport Systems (SafeFITS)" project of the United Nations Economic Commission for Europe (UNECE), financed by the International Road Union (IRU).

Conceptual Framework

Based on the five pillars of WHO Global Plan of Action (WHO, 2011) and an improved version of the SUNflower pyramid (2002):

SafeFITS layers

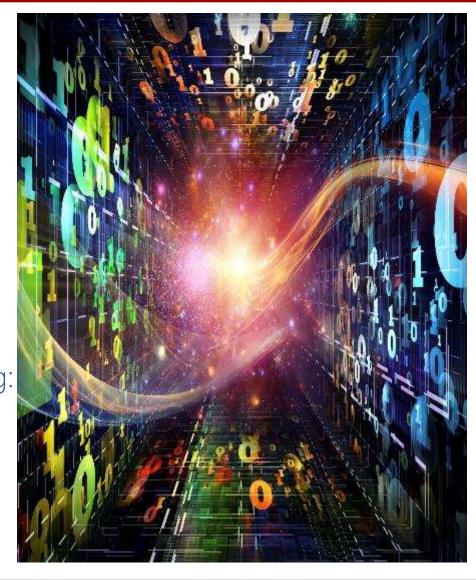
- 1. Economy and Management
- 2. Transport Demand and Exposure
- 3. Road Safety Measures
- 4. Road Safety Performance Indicators
- 5. Fatalities and Injuries

SafeFITS pillars

- 1. Road Safety Management
- 2. Road Infrastructure
- 3. Vehicle
- 4. User
- 5. Post-Crash Services

		PILLARS				
		Road Safety Management	2. Road Infrastructure	3. Vehicle	4. User	5. Post-Crash Services
	1. Economy & Management	Economic Deve- lopments, Strategy & Targets, Regu- latory framework (compliance with UN regulations)	Existence of motorways, of non-paived roads, of road tunnels, Existence of guidelines (for design, RSA etc.), Legislation on speedling	Number of regi- stered vehicles, Vehicle age, Technical inspe- ction legislation (maintenance, roadworthiness, overweight, ADR)	Requirements & regulations on orivers' licensing. Drivers' training. Medical exams of drivers, Legislation on alcohol / use of seatbelts / use of helmets	Trauma management sector level of development Number of hospitals / doctor / intensive Care (IC) beds per population
	2 Transport demand & exposure	Transport Modal Split (road/rail, passenger/finaight, private/public), Share of urban areas, Weather conditions	Exposure with regard to road type, Length of road per roed type, Share of Motorway length out of the total road network, Number of railway level crossings	Exposure with regard to vehicle type, Share of PTW, HGV / carriage of dangerous goods vehicles in the vehicle fleet	Exposure with regard to age & gender	S 0
LAYERS	3. Road Safety Measures	Assessment of measures, Data collection & analysis, International comparisons, Vehicle taxation, Road pricing	Treatment of High Risk Sites, Road Safety Audits, Turnel Road Safety Management, Improvement of signage, Installation of road restraint systems, Lighting, Speed limits in urban areas Traffic Calming	Renewal rate of vehicle fleet, Measures for second-hand vehicles, Vehicle related roadside controls, Automated driving	Enforcement, campaigns, Road safety education, Training	e-call, First aid training, Existence & organisation of trauma centers
	4 Road Safety Performance Indicators	Safety targets, stakeholders' involvement, detail of analysis for intervention selection, economic evaluation	Number of RSAs conducted, Percentage of High Risk Sites treated	Global NCAP score, Mean age of the vehicle fleet per vehicle type, Existence of safety equipment, e-safety	Speeding / Drink & drive infringe- ments, Seatbelts use, Helmets use, Driver distraction, Driver fatigue	Emergency response time, Type of field treatment. Speed of treatment in hospital, Number of ambulances pe population, Number of good samaritanians pe population
	5. Fatalities & Injuries	Fatalities / injuries per million inhabitants, fatalities / injuries per million passenger cars, fatalities / injuries per 10 billion passenger-km	Fatalities / injuries in motorways, in 2-lane rural roads, in urban roads	Share of motorcycle fatalities out of the total fatalities	Sham of pedestrian / bicyclist / motorcyclist fatalities out of the total fatalities, drink-driving related fatalities	Death rate, Hospitalization in IC Unit, Total length of hospitalization

Architecture of the Database


- Data from the five layers and the five pillars
- International databases explored: WHO, UN, IRF, OECD, etc.
- Data for 130 countries with population higher than 2,8 million inhabitants
- Data refer to 2013 or latest available year

Database Overview

- Wherever data for 2013 were not available, the **latest data** available were used.
- The missing values of each indicator of the countries were filled with **the mean value** of the indicator in their regions.
- The respective information of each variable is **properly** represented in the database for the statistical process.
- Data for most variables were available for almost all countries.
- Low data availability is observed for few variables regarding:
 - the restraint use rates
 - the percentage of fatalities attributed to alcohol
 - the distribution of fatalities by road user type
 - transport demand and exposure indicators

Data Analysis Methodology

- Two-step approach of statistical modeling:
 - Estimation of composite variables (factor analysis) in order to take into account as many indicators as possible of each layer
 - Correlating road safety outcomes with indicators through composite variables by developing a regression model with explicit consideration of the time dimension
- Model specification

Log(Fatalities per Population)_{ti} = A_i + Log(Fatalities per Population)_(t-\tau) + B_i * GDP_{ti} + K_i * [Economy & Management]_{ti} + Li * [Transport demand & Exposure]_{ti} + M_i * [Road Safety Measures]_{ti} + N_i * [RSPI]_{ti} + ε_i

Where [Composite Variable]

Calculation of composite variables – Economy and Management

[Comp_EM] = -0.250 (EM2_lt15yo) + 0.229 (EM3_gt65yo) + 0.228 (EM4_UrbanPop) + 0.224 (EM7_NationalStrategy) + 0.221 (EM8_NationalStrategyFunded) + 0.222 (EM9_FatalityTargets)

Indicator loadings and coefficients on the estimated factor (composite variable) on Economy and Management

	Component		
	Loadings	Score coefficients	
EM1_Popdensity	,091	,029	
EM2_lt15yo	-,778	-,250	
EM3_gt65yo	,714	,229	
EM4_UrbanPop	,709	,228	
EM5_LeadAgency	,284	,091	
EM6_LeadAgencyFunded	,226	,073	
EM7_NationalStrategy	,697	,224	
EM8_NationalStrategyFunded	,626	,201	
EM9_FatalityTargets	,692	,222	

Calculation of composite variables – Transport Demand and Exposure

[[Comp_TE] = 0.161 (TE1_RoadNetworkDensity) + 0.149 (TE2_Motorways) + 0.238 (TE3_PavedRoads) + 0.272 (TE4_VehiclesPerPop) + 0.267 (TE5_PassCars) - 0.221 (TE7_PTW) - 0.117 (TE10_PassengerFreight)

Indicator loadings and coefficients on the estimated factor (composite variable) on Transport Demand and Exposure

	Component		
	Loadings	Score coefficients	
TE1_RoadNetworkDensity	,497	,161	
TE2_Motorways	,460	,149	
TE3_PavedRoads	,734	,238	
TE4_VehiclesPerPop	,839	,272	
TE5_PassCars	,825	,267	
TE6_VansLorries	-,132	-,043	
TE7_PTW	-,681	-,221	
TE8_Vehkm_Total	,269	,087	
TE9_RailRoad	,136	,044	
TE10_PassengerFreight	-,360	-,117	

Calculation of composite variables - Measures

$[Comp_ME] = 0.069(ME2_ADR) +$
0.045(ME4_SpeedLimits_urban) +
0.064(ME6_SpeedLimits_motorways) +
0.088(ME7_VehStand_seatbelts) +
0.091(ME8_VehStand_SeatbeltAnchorages) +
0.092(ME9_VehStand_FrontImpact) +
0.091(ME10_VehStand_SideImpact) +
0.090(ME11_VehStand_ESC) +
0.087(ME12_VehStand_PedProtection) +
0.090(ME13_VehStand_ChildSeats) +
0.068(ME15_BAClimits) + 0.068(ME16_BAClimits_young)
+ 0.065(ME17_BAClimits_commercial) +
0.057(ME19_SeatBeltLaw_all) +
0.063(ME20_ChildRestraintLaw) +
0.034(ME22_HelmetFastened) +
0.038(ME23_HelmetStand) + 0.038(ME24_MobileLaw) +
0.035(ME25_MobileLaw_handheld) +
0.038(ME27_PenaltyPointSyst) +
0.040(ME29_EmergTrain_nurses)

icator loadings and coefficients on the estimated factor (composite variable) on Measures				
	Component			
	Loadings	Score coefficients		
ME1_RSA	,245	,025		
ME2_ADR	,681	,069		
ME3_SpeedLaw	,229	,023		
ME4_SpeedLimits_urban	,443	,045		
ME5_SpeedLimits_rural	,200	,020		
ME6_SpeedLimits_motorways	,634	,064		
ME7_VehStand_seatbelts	,877	,088		
ME8_VehStand_SeatbeltAnchorages	,906	,091		
ME9_VehStand_FrontImpact	,908	,092		
ME10_VehStand_SideImpact	,904	,091		
ME11_VehStand_ESC	,891	,090		
ME12_VehStand_PedProtection	,862	,087		
ME13_VehStand_ChildSeats	,896	,090		
ME14_DrinkDrivingLaw	,126	,013		
ME15_BAClimits	,670	,068		
ME16_BAClimits_young	,670	,068		
ME17_BAClimits_commercial	,645	,065		
ME18_SeatBeltLaw	,297	,030		
ME19_SeatBeltLaw_all	,570	,057		
ME20_ChildRestraintLaw	,628	,063		
ME21_HelmetLaw	,236	,024		
ME22_HelmetFastened	,334	,034		
ME23_HelmetStand	,379	,038		
ME24_MobileLaw	,375	,038		
ME25_MobileLaw_handheld	,350	,035		
ME26_MobileLaw_handsfree	-,295	-,030		
ME27_PenaltyPointSyst	,378	,038		
ME28_EmergTrain_doctors	,178	,018		
ME29_EmergTrain_nurses	,399	,040		

Calculation of composite variables - SPIs

[Comp_PI] = 0.144 (PI1_SeatBeltLaw_enf) + 0.155 (PI2_DrinkDrivingLaw_enf) + 0.152 (PI3_SpeedLaw_enf) + 0.160 (PI4_HelmetLaw_enf) + 0.155 (PI5_SeatBelt_rates_front) + 0.146 (PI6_SeatBelt_rates_rear) + 0.150 (PI7_Helmet_rates_driver) + 0.127 (PI8_SI_ambulance) + 0.116 (PI9_HospitalBeds)

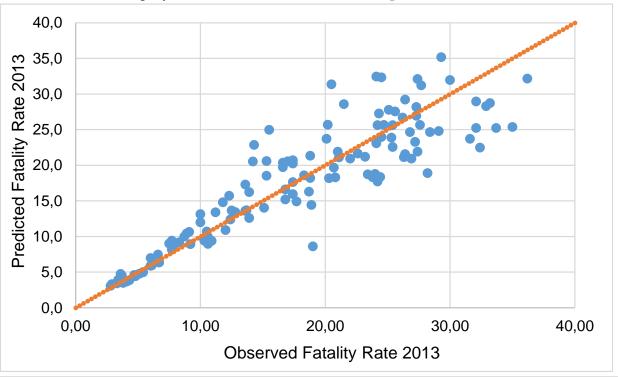
Indicator loadings and coefficients on the estimated factor (composite variable) on SPIs

	Component			
	Loadings	Score coefficients		
PI1_SeatBeltLaw_enf	,756	,144		
PI2_DrinkDrivingLaw_enf	,812	,155		
PI3_SpeedLaw_enf	,795	,152		
PI4_HelmetLaw_enf	,837	,160		
PI5_SeatBelt_rates_front	,811	,155		
PI6_SeatBelt_rates_rear	,766	,146		
PI7_Helmet_rates_driver	,784	,150		
PI8_SI_ambulance	,667	,127		
PI9_HospitalBeds	,607	,116		

Final Statistical Model

The **optimal performing model** for the purposes of SafeFITS

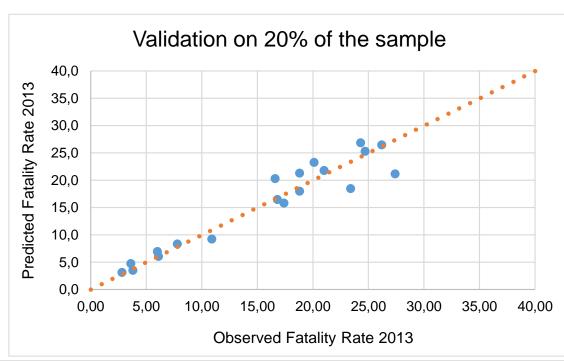
- Dependent variable is the logarithm of the fatality rate per population for 2013
- The main explanatory variables are the respective logarithm of fatality rate in 2010 and the respective logarithm of GNI per capita for 2013
- Four **composite** variables: the economy & management, the transport demand and exposure, the measures, and the SPIs

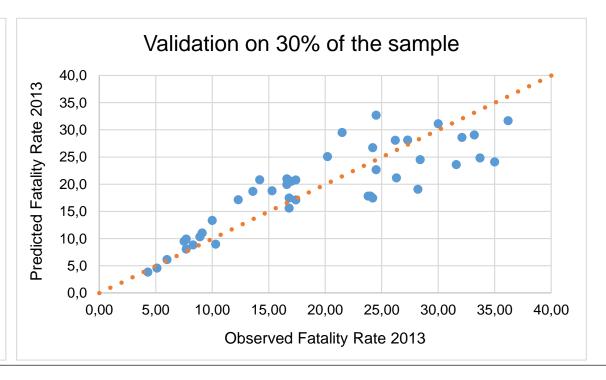

	B Std. Error		95% Confidence Interval		Hypothesis Test		
Parameter		Std. Error	Lower	Upper	Wald Chi- Square	df	p-value
(Intercept)	1,694	,2737	1,157	2,230	38,291	1	<,001
Comp_ME	-,135	,0646	-,261	-,008	4,358	1	,037
Comp_TE	-,007	,0028	-,013	-,002	7,230	1	,007
Comp_PI	-,007	,0030	-,013	-,001	5,652	1	,017
Comp_EM	,007	,0051	-,003	,017	2,009	1	,156
LNFestim_2010	,769	,0462	,678	,859	276,322	1	<,001
LNGNI_2013	-,091	,0314	-,153	-,030	8,402	1	,004
(Scale)	,038						
Likelihood Ratio	1379,00						
df	6						
p-value	<,001						

Statistical Model Assessment

In order to assess the model, a comparison of the observed and the predicted values was carried out:

- The mean absolute prediction error is estimated at 2.7 fatalities per population, whereas the mean percentage prediction error is estimated at 15% of the observed value.
- The model is of very satisfactory performance as regards the good performing countries (low fatality rate) and of quite satisfactory performance as regards the medium performing countries.

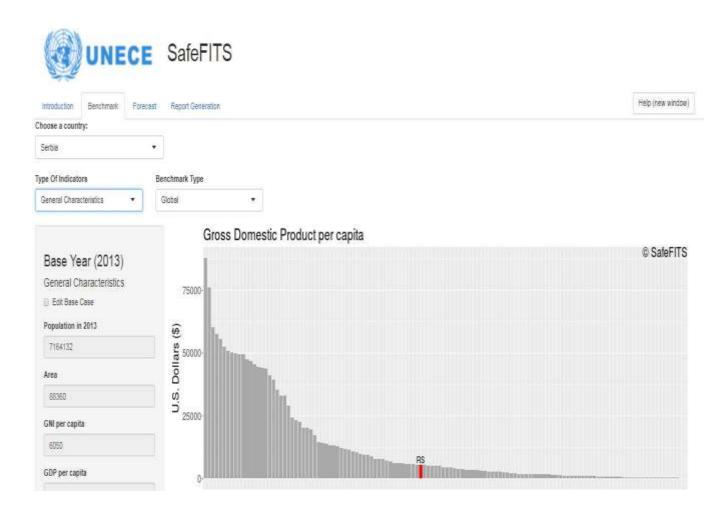




Statistical Model Validation

In order to validate the model, a cross-validation was carried out with two subsets:

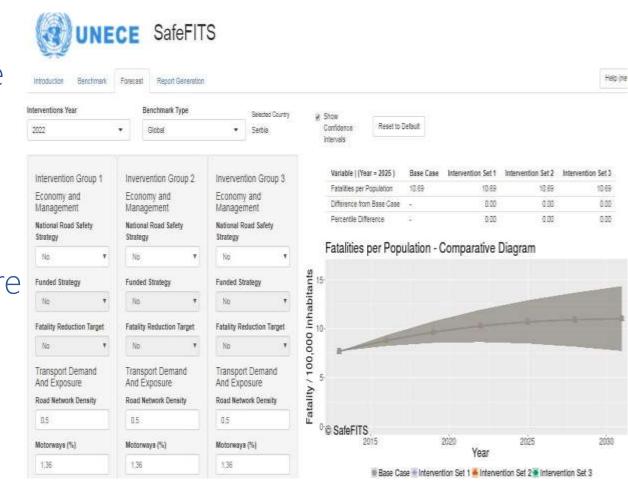
- 80% of the sample was used to develop (fit) the model, and then the model was implemented to predict the fatality rate for 2013 of the 20% of the sample not used
- 70% of the sample was used to develop (fit) the model, and then the model was implemented to predict the fatality rate for 2013 of the 30% of the sample not used



Model Application for Serbia

The overall model implementation includes 3 distinct steps:

- Step 1 Countries Benchmark
- Step 2 Forecast with no new interventions
- Step 3 Forecast with interventions

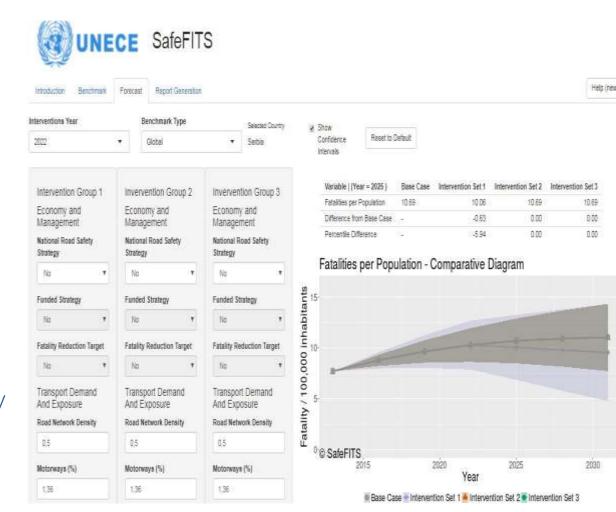

Model Application for Serbia – Forecast with no new interventions

Analysis

The SafeFITS model is implemented for the year of reference on the basis of GNI and demographic indicators projection

Forecasting results

- 11,03 fatalities per 100.000 population are forecasted for 2030
- An increase by 43% is estimated compared to 2013

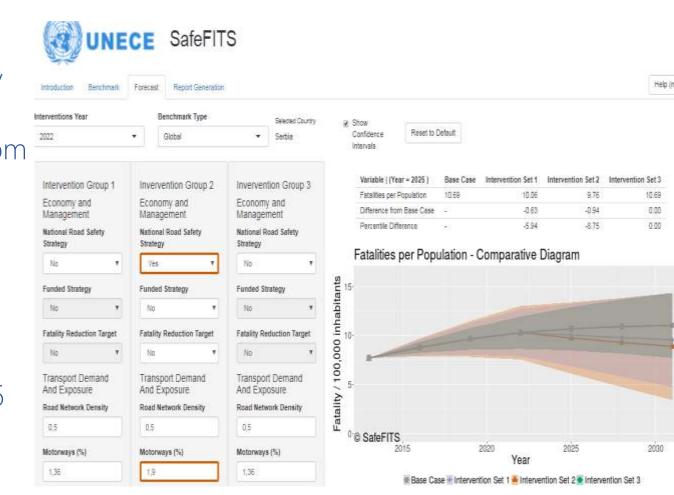

Model Application for Serbia – Forecast with interventions (1/3)

1st set of interventions

- increase of seat-belt law enforcement from 6 to 9
- increase of helmet law enforcement from 8 to 9
- increase of the seat-belt use rates in front seats from 65,8% to 80%
- in the rear seats from 3,1% to 25%
- increase of the helmet use rates from 60 to 78%

Forecasting Results

- The fatality rate for 2025 is estimated at 10,06
- 5,9% lower than the respectively estimated fatality rate in the base case scenario

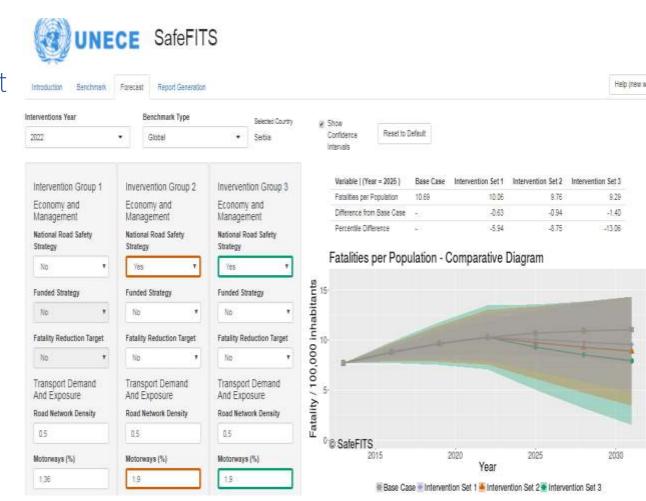

Model Application for Serbia – Forecast with interventions (2/3)

2nd set of interventions

- the implementation of a national road safety strategy
- increase of the percentage of motorways from 1,36% to 1,9%
- increase of the percentage of paved roads from 66,19% to 85%
- introduction of the ADR law

Forecasting Results

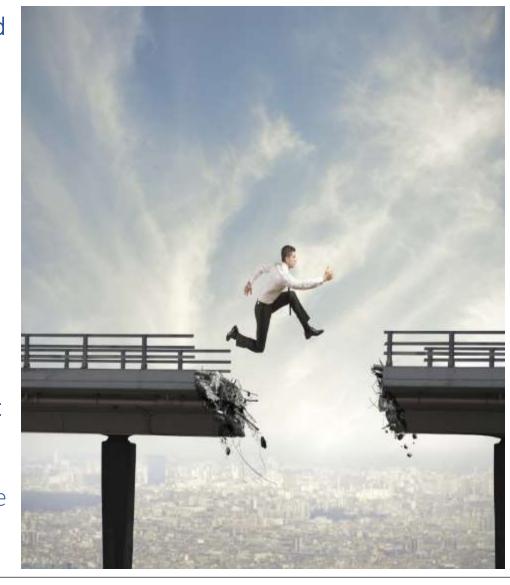
- The fatality rate for 2025 is estimated at 9,66
- 9,6% lower than the respectively estimated fatality rate in the base case scenario


Model Application for Serbia – Forecast with interventions (3/3)

3rd set of interventions

- the introduction in the national legislation 4 out of 7 vehicle standards suggested by the UN:
 - seat-belts
 - seat-belt anchorages
 - frontal impact and
 - pedestrian protection

Forecasting Results


- The fatality rate for 2025 is estimated at 9,29
- 13,1% lower than the respectively estimated fatality rate in the base case scenario

Model limitations and future improvements

- The SafeFITS model was developed on the basis of the most recent and good quality data available internationally, and by means of rigorous statistical methods. However, data and analysis methods always have some limitations.
- Data are primarily directed at vehicle occupants and thus, effects on road safety outcomes of VRUs may not be captured.
- The effects of interventions may not reflect the unique contribution of each separate intervention. It is strongly recommended to **test combinations of "similar" interventions** (e.g. several vehicle standards, several types of enforcement or safety equipment use rates etc.)
- The factor analysis procedure does not assume or indicate that a direct causal relationship exists.
- The calibration with new data will be the ultimate way to fully assess the performance of the model.

Benefits for the Policy Makers

- The first global road safety model to be used for policy support
 - Global assessments (i.e. monitoring the global progress towards the UN road safety targets)
 - Individual country assessments of various policy scenarios
- A framework which enhances the understanding of road safety causalities, as well as of the related difficulties.
- Full exploitation of the currently available global data, and use of rigorous analysis techniques, to serve key purposes in road safety policy analysis: benchmarking, forecasting.
- An important step for monitoring, evidence-base and systems approach to be integrated in decision-making.

13th International Conference "Road Safety in Local Communities" Serbia, Kopaonik April 18 – 21, 2018

SAFEFITS - A GLOBAL MODEL AS A TOOL FOR ROAD SAFETY POLICY MAKING

George Yannis¹, Eleonora Papadimitriou¹, Katerina Folla¹ Nenad Nikolic², Eva Molnar²

¹Department of Transportation Planning and Engineering, NTUA, Greece ²UN Economic Commission for Europe, Sustainable Transport Division, Switzerland