

Exploring Crash Injury Severity on Urban Motorways by Applying Finite Mixture Models

Athanasios Theofilatos¹, George Yannis¹

¹National Technical University of Athens, Irroon Polytechneiou str 8, Athens, GR15773, Greece

Introduction

- The effective treatment of crashes and the proactive transportation safety is a major concern to societies.
- Much research that utilized real-time collected traffic and weather data in freeways has been carried out recently.
- Crash injury severity is underrepresented.

Method of Analysis

- The core analysis of this study is the **finite mixture binary** logistic model (Latent Class).
- The Finite Mixture modelling approach can be considered as an extension of the standard binary logit model.
- It includes a latent class model that captures the effect of unobserved variables on the binary outcome variable.
- Alternative modeling techniques should also be considered.
- Relevant studies from Europe are rare.

Objectives

- The main objective is to propose finite mixture models for modeling crash injury severity.
- Injury severity of occupants involved in crash is examined.
- Address unobserved heterogeneity.
- Real-time traffic and weather data from an urban motorway in Athens, Greece are considered.

Data preparation

 The available dataset refers to the period 2006-2011 and come from a high demand urban motorway of Athens, Greece (Attica Tollway).

- It is based on a finite mixture approach in which the unobserved heterogeneity is accounted for via latent classes.
- Finite mixture analysis divides the sample into distinct classes with homogenous attributes, an important issue is the determination of the number of classes.
- To overcome this issue Bayesian information criterion (BIC) is applied.

Results	Latent Class 1			Latent Class 2		
Variables						
	Mean	t-statistic	p-value	Mean	t-statistic p-value	
Constant term (random)	-1.720	-0.961	0.337	36.153	2.573	0.010
Acc.type0 (reference cat.)	-	-	-	-	-	-
Acc.type1 (fixed)	-2.338	-1.352	0.176	-2.338	-1.352	0.176
Acc.type2 (fixed)	-26.779	-2.262	0.024	-26.779	-2.262	0.024
Acc.type3 (fixed)	-7.196	-2.429	0.024	-7.196	-2.429	0.024
CC (fixed)	-0.002	-1.755	0.079	-0.002	-1.755	0.079
Tr.Prop_avg_30m_up						
(fixed)	-1.038	-2.429	0.015	-1.038	-2.429	0.015
Q_avg_30m_up (random)	0.027	1.362	0.173	-0.236	-2.354	0.019
Occ_stdev_30m_up						
(random)	154.060	2.597	0.009	-1629	-2.134	0.033
Log-likelihood at zero	-134.998					
Final Log-likelihood	-112.152					
Likelihood ratio test	45.692					
McFadden R ²	0.169					

- Crash data were collected from the Greek accident database, SANTRA, which is provided by NTUA.
- Traffic data were extracted from the Traffic Management Centre (TMC) of Attica Tollway.
- Traditional crash characteristics were also considered.
- The TMC data included traffic flow, traffic occupancy, truck proportion and mean time speed every 5 minutes.
- Traffic data from the adjacent upstream loop detector were considered. Data were further aggregated to 15-min and 30-min traffic information to obtain averages, standard deviations and so on, prior to a crash occurrence.
- Weather data were collected from the Hydrological Observatory of Athens, which is an online open-access database, covering more than 10 meteorological stations located in the greater Athens area.

Conclusions

- Promising fit of the finite mixture models.
- A number of traffic parameters such as truck proportion, average flow and standard deviation of occupancy, and other risk factors, such as accident type and engine size have a significant effect on the injury severity outcome of vehicle occupants.
- The model accounted for the heterogeneity among two distinct groups of observations.
- Weather data include rainfall, temperature, relative humidity, solar radiation, wind direction and wind speed.
- The 10-min raw weather data were aggregated over hour in order to obtain maxima, averages and standard deviations, in the time-slice of 1-hour, 2-hours, 6-hours and 12-hours prior to the time of the crash occurrence.

Urban Mobility Shaping the Future Together

- The impact of average flow and standard deviation of occupancy was not fixed across the two produced latent classes and diverse results were produced.
- Collisions with fixed objects or run-off road collisions as well low engine size vehicles are associated with higher severity levels.
- This paper contributes to current knowledge, by having a specific consideration of real-time traffic and weather data and also by applying finite mixture models.

