INTRODUCTION

• The effective treatment of crashes and the proactive transportation safety is a major concern to societies.

• Much research that utilized real-time collected weather data has been carried out recently.

• Powered-Wheeler safety on urban arterials is underrepresented.

• Alternative modeling techniques should also be considered.

• Relevant studies from Europe are rare.

OBJECTIVES

• The main objective is to investigate crash likelihood and severity.

• Powered-Two-Wheelers are the primary focus of the research.

• The feasibility of Bayes Factors (Bayesian t-tests) is examined.

• Real-time weather data from urban arterials in Athens, Greece are considered.

DATA PREPARATION

• The available dataset refers to the period 2006-2011 and come from Kifisias and Mesogeion avenues in Athens, Greece.

• Crash data were collected from the Greek crash database, SANTRA, which is provided by NTUA. Crash characteristics include crash location (intersection/no intersection) and time (day/night).

• Crashes were classified as severe or slight. Another binary variable is created with values 0 (crash without a PTW) and 1 (crash involving a PTW).

• Weather data were collected from the Hydrological Observatory of Athens, which is an online open-access database, covering more than 10 meteorological stations located in the greater Athens area. Weather data include rainfall, temperature, relative humidity, solar radiation, wind direction and wind speed.

• The 10-min raw weather data were aggregated over hour in order to obtain maxima, averages and standard deviations, in the time-slice of 1-hour prior to the time of the crash occurrence.

• For example, if a crash occurred in Kifisias Avenue on 26 August 2011 at 17:00 weather data on the same day and location from 16:00 to 17:00 are considered.

METHOD OF ANALYSIS

• Bayesian t-tests are carried out in order to compare the means of two different groups.

• The mean values of weather parameters are tested a) between crashes with or without Powered-Two-Wheeler involvement and b) between slight and fatal/severe crashes with Powered-Two-Wheelers.

• The comparison is conducted simply by dividing the marginal likelihoods, producing a parameter called a Bayes Factor (BF). The BF is a very good alternative to the traditional t-test and shows the extent to which the data support the H1 hypothesis over H2 hypothesis.

• The parameter BF12 is a very good alternative to the traditional t-test and shows the extent to which the data support the H1 hypothesis over H2 hypothesis.

• Values of Bayes Factor higher than 10 indicate a strong evidence for the H1 hypothesis.

RESULTS

<table>
<thead>
<tr>
<th>Variables</th>
<th>BF</th>
<th>BF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1hr_avg</td>
<td>23.551</td>
<td>0.218</td>
</tr>
<tr>
<td>Hum_1hr_avg</td>
<td>146.173</td>
<td>0.216</td>
</tr>
<tr>
<td>Rain_1hr_sum</td>
<td>0.162</td>
<td>0.256</td>
</tr>
<tr>
<td>WSp_1hr_avg</td>
<td>0.391</td>
<td>0.373</td>
</tr>
<tr>
<td>Sol_1hr_avg</td>
<td>6.275</td>
<td>0.863</td>
</tr>
</tbody>
</table>

CONCLUSIONS

• This paper contributes to current knowledge, by having a specific consideration of real-time weather data and Powered-Two-Wheelers.

• The approach is considered a good alternative to the traditional t-test.

• Wind speed appears to affect the number of PTW’s low severity crashes especially when temperature is higher and there is no intersection.

• Precipitation does not appear to have significance impact on PTW crashes.

• Statistical difference of Temperature and Humidity 1-hour prior to crashes with PTWs and crashes without a PTW.

• In terms of severity, no significant differences were identified between slight and severe PTW crashes, regardless of the weather parameters considered for comparing lower and higher severity crashes.