

7° Πανελλήνιο Συνέδριο Οδικής Ασφάλειας Λάρισα, 11-12 Οκτωβρίου 2018

Quantifying the Need for Driving Data Collection in Driving Behaviour Assessment Using Smartphone Data

Δημήτριος Ι. Τσελέντης, Ερευνητής Ελένη Ι. Βλαχογιάννη, Επ. Καθηγήτρια ΕΜΠ Γιώργος Γιαννής, Καθηγητής ΕΜΠ Νεκτάριος Κοζύρης, Καθηγητής ΕΜΠ

Λάρισα, 11 Οκτωβρίου 2018

- Methodological approach for

- Specifying the required amount of **driving data** that should be collected for each driver

- Elimination of limiting barriers existed so far

- Mobile phone technology
- High cost of
 - in-vehicle data recording systems (e.g. OBD)
 - data plans
 - cloud computing
- Low penetration rate of smartphones and social networks
- Inability to manage and exploit Big Data

- Current technological advances

- collect and exploit data through mobile phones
- easier and more accurately

State-of-the-art (2/2)

- Driving data collection

- On-road experiments
- Naturalistic driving experiments
- Driving simulator experiments
- In-depth accident investigation
- Surveys on opinion and stated behaviour
- Driving metrics Adequate **amount**
 - assessment of each driver
 - deficient amount of data => uncertain or unreasonable results
 - excessive amount of data => significantly
 increase required processing time

Smartphone data collection

- A mobile **application** to record user's driving behaviour (automatic start / stop)
- A variety of **APIs** is used to read mobile phone sensor data
- Data is **transmitted** from the mobile App to the central database
- Data are **stored** in a sophisticated database where they are managed and processed
- Indicators are designed using
 - machine learning algorithms
 - big data mining techniques

Source: OSeven Telematics

Data sample - parameters examined

- Data sample of

- 171 Drivers
- 49,722 Trips
- **Risk exposure** indicators: - Total **distance** (mileage)

- Driving behaviour indicators:

- Number of harsh events
 - harsh braking (longitudinal acceleration)
 - harsh acceleration (longitudinal acceleration)
- Speeding
 - seconds driving over the speed limit
- Mobile phone use distraction
 - seconds using the mobile phone

Data investigation (1/7)

- Convergence index

- Moving window of 40 trips
- at least 200 km
- ≤ 5%

<u>Urban</u>

- Weak **positive correlation** between HA and required distance for convergence
- Required monitoring distance is **higher** for **more** aggressive/ risky drivers
- **No** apparent **trend** for the rest of the metrics

Data investigation (3/7)

<u>Urban</u>

- **Same** sampling **periods** are required for drivers of different percentile value range
- **Maximum** median **distance** value
 - all metrics should have converged to their cumulative average
 - the driving sample acquired is adequate
 - the input/ output ratio is relatively constant to perform DEA analysis

Metric	Percentile range	Metric descriptive statistics				Distance to convergence		
		Average	St. Dev	Min	Max	Average	Median	St. Dev
HA	0% – 25%	8.18	2.61	-	11.61	3.89	3.09	1.77
	25% – 50%	15.92	2.8	11.61	20.54	3.99	3.36	2.08
	50% – 75%	25.01	2.48	20.54	30.14	4.15	3.22	2.46
	75% – 100%	43.23	10.92	30.14	-	5.26	5.19	2.93
110	0% – 25%	3.05	1.26	-	4.95	5.15	4.78	1.79
ЦR	25% – 50%	6.17	0.69	4.95	7.32	4.08	3.35	1.55
нв	50% – 75%	8.6	0.83	7.32	10.61	5.58	4.31	3
	75% – 100%	15.65	3.12	10.61	-	4.69	3.41	2.48
MU	0% – 25%	204	101	-	332	5.59	4.07	3.95
	25% – 50%	495	78	332	606	4.4	3.47	1.74
	50% – 75%	799	111	606	1041	4.43	3.81	2.47
	75% – 100%	2063	994	1041	-	4.93	3.66	3.1
	0% – 25%	727	194	-	947	4.89	3.39	3.08
SP	25% – 50%	1081	67	947	1198	3.43	2.93	1.23
	50% – 75%	1402	119	1198	1594	3.78	3.12	1.88
	75% – 100%	1919	318	1594	-	4.55	3.48	2.87

- **519** km

- 75 trips

Data investigation (4/7)

<u>Rural</u>

- Weak **negative correlation** between HA, HB, mobile usage and the required distance for convergence
- Required monitoring distance is **higher** for **less** aggressive/ risky/ distracted drivers
- No apparent trend for speeding

<u>Rural</u>

- **Different** sampling **periods** are required for drivers of different percentile value range
 - less volatile than in urban road
- **Maximum** median **distance** value
- **579** km - 81 trips

Metric	Percentile range	Me	etric descrip	tive statis	Distance to convergence			
		Average	St. Dev	Min	Max	Average	Median	St. Dev
НА	0% – 25%	3.69	1.7	-	6.42	5.07	4.31	2.19
	25% – 50%	8.8	1.33	6.42	10.79	4.05	3.76	1.34
	50% – 75%	13.58	1.98	10.79	17.02	4.99	4.17	2.7
	75% – 100%	27.27	11.04	17.02	-	3.49	3.36	0.85
НВ	0% – 25%	2.05	0.84	-	3.15	5.2	4.39	2.21
	25% – 50%	4.35	0.67	3.15	5.6	4.29	4.03	1.26
	50% – 75%	6.92	0.69	5.6	8.28	4.89	4.40	2.21
	75% – 100%	13.54	7.16	8.28	-	3.89	3.60	1.87
MU	0% – 25%	85	48	-	157	6.3	5.79	2.61
	25% – 50%	263	50	157	371	4.85	4.42	2.09
	50% – 75%	511	92	371	747	5.01	4.48	1.92
	75% – 100%	1334	684	747	-	4.11	3.62	1.66
SP	0% – 25%	454	170	-	745	4.48	3.99	1.89
	25% – 50%	851	74	745	970	4.44	3.97	2.21
	50% – 75%	1142	112	970	1315	4.19	3.88	1.72
	75% – 100%	1526	181	1315	-	4.25	3.56	1.95

Data investigation (6/7)

<u>Highway</u>

- Weak **negative correlation** between HA, HB, mobile usage and the required distance for convergence
- Required monitoring distance is **higher** for **less** aggressive/ risky/ distracted drivers
- No apparent trend for speeding

<u>Highway</u>

- **Different** sampling **periods** are required for drivers of different percentile value range
 - less volatile than in urban road
- **Maximum** median **distance** value

- **611** km

- is not investigated

Metric	Percentile range	Me	etric descrip	tive statis	Distance to convergence			
		Average	St. Dev	Min	Max	Average	Median	St. Dev
НА	0% – 25%	0.74	0.29	-	1.1	6.78	5.85	4.4
	25% – 50%	1.26	0.12	1.1	1.54	6.39	6.05	2.34
	50% – 75%	1.87	0.24	1.54	2.3	6.07	6.11	2.42
	75% – 100%	3.77	2.12	2.3	-	5.93	5.29	2.89
НВ	0% – 25%	0.36	0.12	-	0.56	7.05	5.92	4.13
	25% – 50%	0.83	0.1	0.56	0.97	7	5.62	3.76
	50% – 75%	1.15	0.13	0.97	1.38	5.72	6.06	1.74
	75% – 100%	2.05	0.64	1.38	-	5.42	4.72	2.51
MU	0% – 25%	35	20	-	66	7.22	5.92	4.68
	25% – 50%	101	18	66	135	6.23	4.98	2.85
	50% – 75%	174	26	135	223	5.64	5.40	1.96
	75% – 100%	455	206	223	-	5.33	4.45	3.49
SP	0% – 25%	193	124	-	346	6.1	5.50	2.85
	25% – 50%	505	91	346	641	6.49	5.92	3.92
	50% – 75%	807	100	641	950	6.66	6.01	2.95
	75% – 100%	1168	249	950	-	5.44	4.64	2.41

Conclusions

- The required **sampling** mileage is identified, different for each:
 - road type
 - driving metric
 - driving aggressiveness
- Not a single critical metric to determine the required driving data amount
- **More** aggressive/ risky drivers need **less** monitoring in rural road and highways

Future challenges

- Exploit a larger driving sample

- relationship between the aggressiveness of a driver and the necessary monitoring distance

- Examine a higher number of driving **attributes**

- Study **dynamic evolution** of driving behaviour attributes

7° Πανελλήνιο Συνέδριο Οδικής Ασφάλειας Λάρισα, 11-12 Οκτωβρίου 2018

Quantifying the Need for Driving Data Collection in Driving Behaviour Assessment Using Smartphone Data

Δημήτριος Ι. Τσελέντης, Ερευνητής Ελένη Ι. Βλαχογιάννη, Επ. Καθηγήτρια ΕΜΠ Γιώργος Γιαννής, Καθηγητής ΕΜΠ Νεκτάριος Κοζύρης, Καθηγητής ΕΜΠ

Λάρισα, 11 Οκτωβρίου 2018