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ABSTRACT 1 

The probability of estimating a traffic collision happening in real-time primarily depends on comparing 2 

traffic conditions just before a collision with traffic conditions during normal operations. Most studies 3 

however utilize aggregated traffic data and are not concerned with the dynamic nature of collisions or the 4 

imbalance of safety databases which can lead to erroneous real-time predictions. In this study, this is 5 

overcome through the use of raw speed time series data of variant duration (i.e. 1-minute to 5-minute time 6 

series data) from a driving simulator experiment and the use of imbalanced learning techniques. Two 7 

classifiers are then employed to examine the proposed idea: (i) Random Forests (RFs) – an ensemble 8 

classifier and (ii) Neural Networks (NNs) – a popular classifier in the literature. These classifiers are tested 9 

on the original time series data, as well as on time-series treated with the imbalanced learning techniques of 10 

undersampling and its integration with oversampling. The main results demonstrate the viability of using 11 

raw speed time series data for real-time safety assessment and the superiority of time series with 4-minute 12 

duration in the classification results. Furthermore, RFs perform well even on 1-minute time series data 13 

while the classification results can be enhanced by up to 40% from imbalanced learning approaches. It is 14 

also demonstrated that the classification results outperform similar approaches in the literature. However, 15 

real-world traffic data and the use of more sophisticated classifiers (e.g. Deep Learning) are expected to 16 

provide more effective collision predictions. 17 

 18 

 19 

 20 

 21 

Keywords: Real-time Collision Prediction, Time-series Classification, Imbalanced Learning, Neural 22 

Networks, Random Forests 23 
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INTRODUCTION 1 

Real-time collision prediction  is formulated on the basis that the probability of a collision occurring could 2 

be estimated for a short-time prediction horizon from traffic data retrieved online (1). Intensive research has 3 

taken place in the past two decades to make real-time collision prediction more accurate regardless of the 4 

traffic data used for the analysis. However, current models need further enhancing. Traditional real-time 5 

collision prediction models usually follow four steps: i) select actual traffic variables (e.g. temporal or 6 

spatial means and variance of them) as predictors, ii) collect data corresponding to historical collision cases 7 

and normal traffic conditions, iii) formulate a classification problem and utilize a collision prediction model 8 

to estimate the probability of a collision and iv) evaluate the modelling performance. Nevertheless, 9 

efficiently applying these four steps is not perfectly tractable and the dynamic evolution of the accidents is 10 

not taken into account. Traffic data might not be available at all times and hence classifiers need to be able 11 

to work with limited or bad quality data (2). Machine learning classifiers have been applied to solve the 12 

problem of correlated variables and missing data, however, in most cases they act like “black-boxes” which 13 

restrict the interpretability of the models. Moreover, as collisions are rare events, the data collection of 14 

collision-prone and normal traffic cases leads to an overrepresentation of cases the cases representing 15 

normal traffic which, consequently, results in biased classifiers and a large number of false alarms (3).  16 

Classification of imbalanced datasets is a documented problem in data mining (4–6). The most important 17 

problem with imbalanced data is the high misclassification rate for the under-represented class, because the 18 

classifier favours the majority class. Oddly, there is little evidence in the literature to date to take into 19 

account the dynamic nature of accidents as well as the imbalance of collision datasets when building 20 

real-time collision prediction classifiers.  21 

This paper will therefore attempt to classify time series speed data and simultaneously assess the 22 

potential enhancement in real-time collision prediction models after treating datasets with imbalanced 23 

learning techniques. Two machine learning classifiers, Neural Networks(NNs) and Random Forests (RFs) 24 

are used for classifying speed time series as collision-prone or safe using different temporal intervals. 25 

The paper is organized as follows: firstly, the existing literature and its main findings are 26 

reviewed. A detailed description of the RFs and NNs classification algorithms is described next, along with 27 

principles of imbalanced learning. This is followed by a presentation of the data used in the analysis, the 28 

pre-processing methodology and the results of the classification algorithm. Finally, the last section 29 

summarizes the main conclusions of the study and gives recommendations for future research. 30 

 31 

LITERATURE REVIEW 32 

Most recent approaches in real-time collision prediction modelling require the utilization of data just before 33 

a collision occurrence (termed as collision-prone) as well as data of collision-free (also termed as normal) 34 

traffic conditions. Traffic data resembling collision-prone and normal traffic are usually employed as a 35 

matched-case control methodology, in which every collision-prone traffic condition is matched with a 36 

number of normal traffic cases. This is so as to single out collision precursors (i.e. traffic indications of an 37 

imminent collision). The technique of matched-case control for real-time collision prediction studies was 38 

initially introduced by Abdel-Aty et al. (7) and has thereafter been used massively because it eliminates the 39 

effects of location, time and weather conditions on the probability of a collision occurrence.  In studies 40 

employing matched-case control research design, the ratio of collision-prone to safe traffic conditions 41 

varies from 1:4 (8) and 1:5 (9, 10) to 1:34 (11).  In the literature, there is no set rule for choosing a ratio 42 

between cases and controls as normally the number depends on the available data. However, according to 43 

(12) ratios greater than 1:5 do not result in a statistically significant difference in predicting performance.  44 

 45 

Temporal Aggregation of traffic data and dynamic considerations 46 
As the application of real-time collision prediction models is the proactive identification of collision-prone 47 

traffic conditions, researchers aggregate the raw traffic data coming from various traffic sensors into 48 

different intervals of temporal aggregations. In (13), for instance, aggregated traffic data into 5-minute 49 

intervals and suggested that 5 minutes just before the collision occurrence should represent hazardous 50 

traffic conditions while 30 minutes of aggregated traffic data before the crash should imply safe traffic. 2.5 51 

minutes of data just before the collision event were discarded in (14) 30 minutes of aggregated traffic data 52 
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for modelling real-time collision risk were utilized. Abdel-Aty et al. (1) stated that raw data (e.g. 20-second, 1 

30-second or 1-minute data) from loop detectors or other traffic measuring devices include random noise 2 

and therefore their utilization in collision prediction modelling is burdensome. They divided the 30-minute 3 

interval just before a collision into six 5-minute time intervals and concluded that the best results for 4 

collision prediction are obtained using traffic data 5-10 minutes before a collision. The same authors (15) 5 

utilized 3-minute traffic data aggregation and concluded that it performed worse than 5-minute aggregation.  6 

In the following years, the vast majority of the literature on real-time collision prediction (11, 16–7 

25) followed similar methodologies; traffic data are aggregated in 5-minute intervals and the five-minute 8 

interval 5-10 minutes before the crash is used for predicting if a collision is imminent or not. The only 9 

differentiations from the majority of studies were found in (26) who utilized traffic data from the interval 10 

0-5 minutes before the collision and (27, 28), where traffic data from the interval 10-15 minutes before each 11 

collision were used for modelling. Τhe prediction of each approach is relative to the traffic data used to 12 

calibrate the model. For example, if the model is calibrated using data 5-10 minutes before the collision, the 13 

model would be able to identify whether the traffic conditions at a specific time moment are hazardous 14 

enough to cause a collision in the next 10 minutes. 15 

More recently, (29) attempted to correlate collision risk with microscopic traffic data (raw loop 16 

detector data) along with surrogate safety measurements (e.g. Time-to-Collision or TTC). However, their 17 

focus was the identification of weather and kinematic characteristics leading to fog-related collisions only 18 

and not the identification of collision-prone traffic conditions. A large dataset of highly disaggregated AVI 19 

data from two motorways in Chile was used in (30), but also aggregated their dataset into 5-minute intervals 20 

to cope with the influence of geometric or driving behaviour characteristics on the prediction performance. 21 

Recently, Katrakazas (31, 32) utilized highly disaggregated data for real-time safety assessment, however 22 

the majority of the disaggregated data were simulated. 23 

 24 

Methods utilized for analysis 25 
Methodologically, recent real-time collision prediction approaches are divided into two broad categories: 26 

(1) statistical (34, 35) and (2) artificial intelligence (AI) or machine learning (11, 36–40). 27 

With regards to statistical approaches, traditional binary logit (1) and Bayesian logit; (18) as well as 28 

random parameters logit models (2) have been applied. In a traditional logit model (i.e. with fixed effects) 29 

the estimated coefficients correspond to averaged effects without considering individual diversity. Random 30 

parameter models can account for the heterogeneity of road geometry, weather conditions or driving 31 

behaviour and have superior performance when compared to traditional logit (41).However, regression 32 

models require the determination of a critical odds ratio as a threshold for the identification of 33 

collision-prone traffic conditions (42) and also rely heavily on distribution assumptions for both the 34 

collision frequency and the traffic parameters. 35 

The first approaches within the machine learning domain for real-time collision prediction were 36 

concerned with Neural Network (NN) applications. For example,  a number of studies (43, 44) utilized 37 

three types of NNs: (i)  Probabilistic (36), (ii) Radial Basis Function (44, 43) and (iii) Multilayer Perceptron 38 

(44, 43) for real-time collision estimation on American freeways, demonstrating that NNs which do not 39 

require any distributional assumptions outperform statistical approaches. NNs usually require a large 40 

dataset for training (45). However, their major drawback is related to the incorporation of the “black-box” 41 

effect, which  prevents clear understanding of the model’s underpinning properties, interpretation of the 42 

model’s results  and model transferability (46). Furthermore, NN models often suffer from over-fitting (38) 43 

and require extra computational resources to overcome it (45). The same “black-box” effect was also 44 

documented as a problem for other machine-learning approaches such as Support Vector Machines (SVMs) 45 

(38). 46 

Genetic Programming, an extension of Genetic Algorithms (47), was proposed by Xu et al. (27) to 47 

remove the “black-box” effect of machine learning approaches, but their model faced difficulties with 48 

regards to transferability and practical implementation. In another attempt to tackle the effect of 49 

“black-box”, Lv et al. (48) and Lin et al. (28) utilized the non-parametric algorithm of k-Nearest 50 

Neighbours (k-NN).  51 
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In order to deal with the drawbacks of previous approaches (both logistic regression and machine 1 

learning ones), Hossain and Muromachi proposed Bayesian Networks (11). They investigated collision 2 

prediction on main motorway segments and ramp vicinities by using traffic flow variables and finding an 3 

ideal arrangement of detectors for data collection, after hypothesizing that the collision mechanism is 4 

different on main segments and ramps. Their study, however, had limited transferability.  5 

Sun and Sun (40) implemented Dynamic Bayesian Networks, an extension of Bayesian Network 6 

able to model temporally sequential data. The focal point of their approach is that they treated collisions as 7 

an event triggered by dynamically changing precursors, which is a more realistic view of investigating 8 

collision probability over focusing on making point predictions based on aggregated traffic data. Bayesian 9 

Networks combine the probability and the graph theory to represent dependencies between predictors and 10 

the dependent variable. In order to be able to represent the probabilities of each of the included variables, 11 

Bayesian Networks require a sufficiently large dataset which makes them difficult to be implemented with 12 

small and unbalanced datasets. On the same principle, Theofilatos (49, 50) indicated that time series could 13 

be applied for real-time safety applications due to the dynamic nature of collisions and utilized SVMs after 14 

applying discrete wave transformation to 3-hour long (aggregated at 5-minute intervals) time series data 15 

before accident occurrences. More recently, Fountas et al. (51) developed dynamic random parameters 16 

models, but also utilized aggregated traffic data.  17 

Finally, only the work of (30) took into consideration the imbalance of safety related datasets and 18 

applied a technique of imbalanced learning with SVMs to predict the probability of a collision in real-time. 19 

However, as mentioned before the data used were aggregated and there was no comparison with other 20 

machine learning approaches. 21 

It can be observed from the literature review, that the state-of-the-art in real-time safety assessment, 22 

fails to utilize disaggregated data and also lacks in treating the imbalance of safety datasets and the dynamic 23 

nature of collision occurrences. Therefore, the current paper will attempt to classify time series data, of 24 

variant duration and by making use of imbalanced learning approaches. 25 

 26 

METHODOLOGY 27 

Binary classification and its evaluation metrics in real-time collision studies 28 
The main objective of this study is to identify collision-prone speed time series from highly disaggregated 29 

data by using the RF and NN classifiers. As this objective aims to distinguish between two classes (i.e.  30 

collision-prone and safe speed), the problem is a binary classification one. 31 

Consider a training dataset 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {(𝑥𝑛 , 𝑦𝑛), 𝑛 = 1, … 𝑁}  being available where 𝑥𝑛 is a 32 

predictor variable and 𝑦𝑛={0,1} is a response. A binary classification problem is the one attempting to build 33 

a function f which, given new data instances will assign them to the correct class. Moreover, the 34 

classification performance of every classifier is initially assessed through the confusion matrix. In a 35 

confusion matrix, the predictions of each data instance are contrasted with the original class to which they 36 

belonged, so as to ascertain whether they are correctly classified. In the real-time collision prediction task, 37 

the binary classification problem is concerned with the identification of collision-prone traffic, hence the 38 

positive class represents “collision-prone” traffic and the negative class represents “safe” traffic. 39 

Usually, classification performance is measured with the confusion matrix which demonstrates the 40 

quantities of correctly identified and misclassified instances for each of the two classes.  41 

Based on the confusion matrix, widely used metrics include: 42 

Recall = 
TP

TP+FN
        (1) 43 

Specificity = 
TN

TN+FP
        (2) 44 

Precision = 
TP

TP+FP
        (3) 45 

G-means= √𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡y      (4) 46 

f1-measure= 
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
       (5) 47 

where: TN: True Negative, TP: True Positive, FN: False Negative, FP: False Positive. 48 
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The recall statistic shows the correct classification accuracy with respect to collision-prone traffic 1 

conditions, while the specificity statistic shows the classification accuracy in terms of safe conditions. 2 

Precision is used for identifying the classification accuracy among the classes. G-means is used to ensure 3 

whether the use of an imbalance dataset has any negative impact on the balanced qualification accuracy. 4 

Lastly, the f1-measure is a metric which resembles the collision-prone classification ability of the classifier 5 

models (40). 6 

 7 

Classification algorithms 8 
RFs belong to the group of ensemble classifiers and more specifically to the group of bagging algorithms. 9 

Bagging algorithms make use of only one learning algorithm and modify the training set by using the 10 

bagging algorithm to create new training sets (52). RF is an evolution of bagged trees and uses the bagging 11 

algorithm along with the random subspace method proposed by Ho (53). Each tree is built using  the 12 

impurity Gini index (54). Nevertheless, only a random subset of the input features is used for the 13 

construction of the tree and no pruning takes place. For each new training dataset, one-third of the samples 14 

is randomly neglected and forms the out-of-bag (OOB) samples. The samples that are not neglected are 15 

used for building the tree. For every constructed tree the OOB samples are used as a validation dataset and 16 

the misclassification OOB error is estimated. When a new data record (say t) needs to be classified, it is run 17 

through all the constructed trees and a classification result for every tree is obtained. The majority vote over 18 

all the classification results from all the constructed tree is chosen as the classified label for that specific 19 

data record (55). However, an appropriate value for the number of features used for splitting a node of a tree 20 

needs to be tuned by the user in order for the OOB misclassification error to be as low as possible (55). 21 

A ΝΝ is a parallel-distributed processor made up of simple processing units having natural 22 

propensity for learning from an available training dataset and making general predictions for future 23 

“unknown” data (56). This generalization property of NNs refers to the ability of a “trained” network to 24 

provide satisfactory responses even for inputs that were not used for training. In order to define a NN 25 

models three entities need to be defined: i) the model of processing elements themselves, ii) the network 26 

topology, and the learning rules. In this study, a multi-layer perceptron (MLP) network with feed-forward 27 

connections was used. 28 

 29 

Imbalanced learning 30 
One of the primary limitations of real-time collision prediction models as indicated in the literature review 31 

is the imbalance of the datasets used in real-time collision prediction modelling where safe traffic condition 32 

cases are over-illustrated against collision-prone conditions due to the rarity of collision events. This 33 

subsection will discuss the methods used to improve the performance of real-time collision prediction 34 

classifiers. 35 

Classification of imbalanced datasets is a documented problem in data mining (4–6). The most 36 

important problem with imbalanced data is the high misclassification rate for the under-represented class, 37 

because the classifier favours the majority class. To overcome this problem proposed solutions from the 38 

literature can be grouped into three groups: 39 

1) Data sampling 40 

2) Algorithm alteration 41 

3) Cost-sensitive learning 42 

The first solution requires that the sampling of training cases should be modified to a certain extent, 43 

in order for a more balanced dataset to be produced. Next, the algorithm alterations solution relates to 44 

modifications made in learning algorithms e.g. in the kernels for kernel-based approaches such as SVMs or 45 

in the construction of trees for tree-based approaches such as Random Trees or RFs. The third solution 46 

applies higher misclassification costs for instances of the minority class (i.e. for false positives) and lower 47 

misclassification costs for the majority class (i.e. for false negatives). In this study the first solution will be 48 

utilized (i.e. Data Sampling) and is described in the following sub-section. 49 

  50 
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Data Sampling 1 

In order to achieve a more balanced dataset, He and Garcia (4) propose random oversampling or 2 

undersampling. Random oversampling is a technique which artificially appends data in the original dataset 3 

while random undersampling is a technique that randomly selects cases from the majority class so that a 4 

more balanced dataset is acquired. However, it is suggested in (4)that oversampling might lead to 5 

over-fitting. Thus, undersampling would generally be preferable for the purposes of this work. However, 6 

data cleansing in conjunction with oversampling is also suggested as a solution to address over-fitting and 7 

hence it will also be tested. 8 

Reviewing the literature in undersampling and overasampling with data cleansing, it was found that 9 

Repeated Edited Nearest Neighbours (RENN) (57), its integration with Synthetic Minority Oversampling 10 

TEchnique (SMOTE) (58) performed well for classes that are difficult to recognise (59). 11 

RENN utilizes the Edited Nearest Neighbour (ENN) algorithm (60) repeatedly until all the 12 

instances in the dataset have a majority of their neighbours within the same class. ENN applies the kNN 13 

algorithm and removes all misclassified instances from the training dataset. In this way, the difference 14 

between classes is more obvious and a smooth decision threshold is obtained. The RENN algorithm 15 

developed in (61)is briefly discussed below:  16 

 If 𝐷𝑒 is the dataset acquired from the ENN algorithm and 𝐷𝑜 is the original dataset repeat: 17 

o At every iteration i for each instance 𝑥𝑖 in 𝐷𝑒 discard 𝑥𝑖 if it is misclassified using kNN 18 

 Until 𝐷𝑒
𝑖 = 𝐷𝑒

𝑖−1 where 𝐷𝑒
𝑖 is the edited dataset in iteration i and 𝐷𝑒

𝑖−1 is the edited dataset in 19 

Iteration i-1. 20 

SMOTE integrated with ENN aims at producing well-defined class clusters which can potentially 21 

improve classification results. After artificially generating instances of the minority class through SMOTE, 22 

ENN is implemented to conduct the data cleaning in depth and removes data instances from both classes 23 

when the three nearest neighbours of a data instance are misclassified (59). This is beneficial, especially for 24 

datasets with a small number of instances in the positive class, for instance collision-prone traffic, in 25 

datasets containing collision data which are rare events. The algorithm will be henceforth termed as 26 

SMOTE-ENN. 27 

 28 

DATA DESCRIPTION AND PRE-PROCESSING 29 

The data utilized in this study were collected using a driving simulator at the Department of Transportation 30 

Planning and Engineering of the National Technical University of Athens. More specifically, a FOERST 31 

Driving Simulator FP, consisting of 3 LCD wide screens 40" (Full HD: 1920x1080 pixels, a driving 32 

position and a support motion base was employed. The simulator’s dimensions at full development are 33 

230x180cm, the width of its base is 78cm and its total field of view is 170 degrees. The data collected with 34 

the simulator were originally used for the Distract project (62) which investigated the causes and impacts of 35 

driver distraction, using a driving simulator.  36 

The driving scenarios included driving in rural, urban and motorway environments. For the 37 

purposes of this paper only the rural area data were used. Each experiment included a 15- to 20-minute 38 

warm-up drive, so as to familiarize the driver with the simulator, and a 20-minute recorded driving session. 39 

The rural route was 2.1 km long on a single carriageway, with 3m lane width, zero gradient and mild 40 

horizontal curves. During each trial, 2 unexpected incidents were programmed to occur and concerned the 41 

sudden appearance of an animal. Only incidents resulting in crashes were considered in this study. The 42 

experiment was counterbalanced with regards to the number and order of trials. For more details on the 43 

dataset and the experiment, the reader is referred to (62, 63). 44 

In total, 279 driving sessions were taken into account for the current paper. For every driving 45 

session the variables of interest were the actual vehicle speed in km/h, and the binary existence of a crash or 46 

not (1 for crash, 0 for safe driving). Μeasurements were recorded every 17 and 33 milliseconds. The 47 

sessions were divided into those that included a collision event and those that did not. In order to obtain the 48 

time series for collision events, the collision time was initially identified, and speed measurements were 49 

taken into account for 1,2,3,4 and 5 minutes before each collision, and were labelled as “collision-prone”. 50 

The five different time intervals were chosen so as to investigate the effect of time series length on the 51 

classification results. In order to represent safe driving conditions, the sessions that did not included 52 
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collisions were marked as safe and were divided into 1- to 5-minute time series. 169 collision events were 1 

found in the dataset, and the ratio of collision: safe time series was 1:2, 1:3, 1:4, 1:6 and 1:13 for the 2 

5-,4-,3-,2- and 1-minute time series respectively. 3 

 4 

RESULTS AND DISCUSSION 5 

As mentioned previously, the algorithms tested were RFs and NNs. Before the initiation of each algorithm, 6 

an optimization routine was run along with 10-fold cross-validation in order to find the optimal parameters 7 

for each algorithm using the training dataset. RFs with 100 estimators of maximum depth 3 and a Multilayer 8 

Perceptron with α=0.05 were utilized. In order to avoid over-fitting and assure optimal results, 2/3 of the 9 

dataset were used for training the classifiers and 1/3 of the dataset was used for testing the classification 10 

results. The models were developed in Python 2.7 using the scikit-learn (64) package. The 11 

imbalanced-learn package in python (65) was utilized in order to apply imbalanced learning approaches to 12 

the dataset. The two techniques that were utilized were RENN regarding undersampling and the 13 

combination of SMOTE (taking into account 10 data neighbours) and ENN. Each classification algorithm 14 

(i.e. RFs and NNs) was trained with the balanced dataset and its performance was tested on the original 15 

(imbalanced) dataset. By testing the performance on the original dataset, it is ensured that the validation of 16 

the classification results is not based on artificially created instances from SMOTE-ENN or a smaller 17 

sample acquired through RENN, but is directly acquired from the original dataset. 18 

The classification results evaluated through equations 1-5, are presented in Table 1. For every 19 

algorithm, a number is used to denote the length of the time series (e.g. 1 denotes a time series of 1-minute 20 

duration) and in the cases where imbalanced learning has been used the technique implemented is also 21 

indicated. For example, RF_3_RENN denotes the classification results for the Random Forest Classifier on 22 

3-minute time-series data which have been treated with the imbalanced technique of RENN to counteract 23 

on the imbalance between collision-prone and safe instances. 24 

TABLE 1 Classification metrics for the developed classifiers 25 

Classifier Accuracy Precision  Recall Specificity f1-score G-Means False Alarm Rate 

RF_1 95.13% 70.00% 43.75% 98.70% 53.85% 55.34% 1.30% 

NN_1 93.50% - 0.00% 100.00% - - 0.00% 

RF_2 91.25% 88.24% 50.85% 98.74% 64.52% 66.98% 1.26% 

NN_2 68.97% 30.14% 74.58% 67.92% 42.93% 47.41% 32.08% 

RF_3 92.49% 87.50% 65.12% 98.10% 74.67% 75.48% 1.90% 

NN_3 84.98% 54.24% 74.42% 87.14% 62.75% 63.53% 12.86% 

RF_4 91.67% 88.89% 71.11% 97.48% 79.01% 79.50% 2.52% 

NN_4 87.25% 85.19% 51.11% 97.48% 63.89% 65.98% 2.52% 

RF_5 83.13% 86.11% 58.49% 95.33% 69.66% 70.97% 4.67% 

NN_5 66.88% 0.00% 0.00% 100.00% - - 0.00% 

RF_1_RENN 96.02% 75.91% 61.54% 98.56% 67.97% 68.35% 1.44% 

NN_1_RENN 93.38% 60.71% 10.06% 99.52% 17.26% 24.71% 0.48% 

RF_2_RENN 92.82% 75.48% 69.23% 96.50% 72.22% 72.29% 3.50% 

NN_2_RENN 83.65% 23.53% 9.47% 95.21% 13.50% 14.93% 4.79% 

RF_3_RENN 92.63% 95.73% 66.27% 99.26% 78.32% 79.65% 0.74% 

NN_3_RENN 79.90% 50.00% 0.59% 99.85% 1.17% 5.44% 0.15% 

RF_4_RENN 91.30% 89.29% 73.96% 97.05% 80.91% 81.26% 2.95% 

NN_4_RENN 52.36% 33.41% 91.72% 39.29% 48.97% 55.35% 60.71% 

RF_5_RENN 85.71% 76.27% 79.88% 88.43% 78.03% 78.06% 11.57% 

NN_5_RENN 68.23% - 0.00% 100.00% - - 0.00% 

RF_1_SMOTE-ENN 88.75% 36.22% 84.02% 89.10% 50.62% 55.17% 10.90% 

NN_1_SMOTE-ENN 78.40% 21.24% 79.29% 78.33% 33.50% 41.03% 21.67% 
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RF_2_SMOTE-ENN 89.23% 56.91% 82.84% 90.23% 67.47% 68.66% 9.77% 

NN_2_SMOTE-ENN 58.69% 23.84% 94.08% 53.18% 38.04% 47.36% 46.82% 

RF_3_SMOTE-ENN 92.87% 80.45% 85.21% 94.79% 82.76% 82.79% 5.21% 

NN_3_SMOTE-ENN 29.25% 21.68% 96.45% 12.35% 35.40% 45.72% 87.65% 

RF_4_SMOTE-ENN 92.48% 80.10% 92.90% 92.34% 86.03% 86.26% 7.66% 

NN_4_SMOTE-ENN 89.97% 73.27% 94.08% 88.61% 82.38% 83.03% 11.39% 

RF_5_SMOTE-ENN 83.65% 69.16% 87.57% 81.82% 77.28% 77.82% 18.18% 

NN_5_SMOTE-ENN 76.13% 61.05% 68.64% 79.61% 64.62% 64.73% 20.39% 

 1 

From Table 1 it can be observed that imbalanced learning significantly enhances the performance 2 

of the classifiers. RFs generally outperform NNs, while the best results are indicated for the 3- and 4-minute 3 

time series data. When comparing the imbalanced learning techniques, it is observed that the integration of 4 

oversampling with undersampling results in better classification performance, than only undersampling the 5 

majority class. Observing the original time series data, without any imbalanced learning treatment, it is 6 

shown that NNs perform better in terms of identifying correctly, collision-prone conditions in shorter time 7 

series (i.e. consisting of 1-minute, 2-minute and 3-minute measurements) while RFs perform better when 8 

the duration of time series increases. The majority of false alarms is higher for NNs than RFs, which can be 9 

explained by the small data size, as usually NNs fail to perform well when small datasets are employed (66).  10 

Looking at the overall performance of the classifiers, as depicted in the f1-score and G-means, it is 11 

understood that the best results are obtained with RFs and SMOTE-ENN using a 4-minute time series 12 

(f1=86%, G-means=86.3%) and guaranteeing correct identification of both collision-prone speed time 13 

series, as well as safe conditions. More importantly, it is also shown that even without imbalanced 14 

treatment, the original 4-minute series outperforms the majority of the developed classifiers. Another 15 

important finding is that RFs when combined with undersampling are able to identify almost 70% of 16 

collision-prone speed conditions with a very small false alarm rate even when 1-minute or 2-minute speed 17 

data are used.  As a result, even when data collected over a short time period are available, they can 18 

efficiently be used for real-time safety assessment, thus improving the speed of predictions. 19 

To further illustrate the enhancement in classification performance, that imbalance learning 20 

provides, Figure 1 demonstrates the percentage change in recall (i.e. the identification of collision-prone 21 

speed conditions), f1and G-means scores for the RF classifier over all the speed time series used. 22 

 23 
FIGURE 1: Percentage change in classification metrics when compared with the untreated 24 

classification results 25 
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Observing Figure 1, it is shown that the improvement in identifying collision-prone conditions, is 1 

higher for time series of shorter duration, and can assist in recognizing 40% more “dangerous” cases. Such 2 

an enhancement is also shown when 4-minute or 5-minute series are used, however the effect is only half 3 

when compared to 1-minute or 2-minute speed time series. Nevertheless, it is also demonstrated that 4 

although the enhancement in recall is significant, the overall classification performance is only marginally 5 

improved after treating with imbalanced learning techniques. 6 

In order to correlate the current paper with existing literature, the best of the developed speed time 7 

series classifiers are compared to the results of Theofilatos et al. (49, 50), who also investigated speed-time 8 

series classification for estimating accident involvement, but using 5-minute aggregated data in 3-hour long 9 

time series. The comparison (illustrated on Figure 2) demonstrates that the time-series classifiers developed 10 

in this work, outperform the ones already developed in the literature in identifying collision-prone speed 11 

conditions and with regards to false alarm rates. Even classifiers without the treatment of imbalanced 12 

learning utilizing raw 4-minute time series data perform similarly with the classifiers developed in (49, 50),  13 

which utilized real-world data over a period of 3-hours. 14 

 15 
FIGURE 2 Comparison of developed classifiers with the results of Theofilatos et. al (2018) 16 

 17 

  18 
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CONCLUSIONS 1 

Real-time collision prediction has been the aim of many experts in the area of ITS over the recent decades. 2 

However, most of the approaches fail to take into account the dynamic nature of collision occurrences, rely 3 

on aggregated data which fail to efficiently reflect the specific traffic dynamics that may lead to collisions 4 

and do not consider the imbalance of safety databases. 5 

This paper proposes the classification of raw speed time series data before collision events using 6 

imbalanced learning. The approach intents to overcome two problems: i) the use of aggregated data, as raw 7 

time-series data are utilized and ii) the imbalance of safety databases through the use of imbalanced 8 

learning. Two classification algorithms, the renowned NNs and the ensemble RFs were utilised to 9 

distinguish between collision-prone and safe speed conditions. The data used were obtained through a 10 

driving simulator experiment in Athens, which took place in order to assess the driving performance of 11 

drivers with cognitive impairment. Five speed time series were constructed in order to test the effect of 12 

duration in the classification results. Regarding imbalanced learning, two techniques were utilized, namely 13 

undersampling of the majority class (i.e. safe traffic conditions) and oversampling of the minority class (i.e. 14 

collision-prone traffic) integrated with undersampling. The imbalanced learning classifiers were trained 15 

using balanced datasets and were tested on the original imbalanced datasets. The algorithms’ performance 16 

was evaluated using their overall accuracy and the metrics of recall, specificity, precision, recall, G-means 17 

and F-measure. 18 

The classification results showed that raw speed time series can efficiently be used in real-time 19 

safety assessment. The classification performance of the developed classifiers outperforms results in the 20 

literature in terms of identifying collision-prone speed conditions with a low false-alarm rate. It was shown 21 

that RFs in general lead to better classification results when compared to NNs, and the treatment with 22 

imbalanced learning can enhance results up to 40% even when 1-minute time series are utilized for 23 

real-time classifications.  24 

However, in order for the proposed approach to become more efficient tests should be performed 25 

with real-world data in order to obtain traffic conditions as much realistic as possible. Lastly, more 26 

sophisticated techniques such as Bayesian Networks or Deep Learning should be explored to cope with the 27 

noise of time series of shorter duration. 28 
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