

Impacts of Large Urban Regeneration Projects: The case of the New Athens Intercity Bus Terminal

Foteini Orfanou¹, Eleni I. Vlahogianni¹, George Yannis¹, Ioannis Golias¹ Constantinos Moraitis²

¹School of Civil Engineering, Department of Transportation Planning and Engineering ²School of Architecture, Department of Architectural Language, Communication and Design

Presentation Outline

15th World Conference on

Transport Research
26 - 31 May 2019

Mumbai, India

- 1. The Urban Regeneration Concept
- 2. The project
- 3. Objectives
- 4. Methodology
- 5. Results
- 6. Conclusions
- 7. Challenges

Urban Regeneration Concept

- **➤ Upgrade** of the area and its surrounding
- **≻**Multimodal transport
- ➤ Various impacts
 - ➤ Social
 - **≻** Economic
 - Environmental
- ➤ Traffic conditions improvement
- Transportation projects can lead to urban regeneration

The project

Full project name:

 Management, Organisation, Development and Planning of a Multi-Operation System for the Development of the Interurban Bus Central Terminal at Eleonas (KSYL)

➤ Contracting Authority and Funding

• Cooperative "Athens Interurban Central Bus Station"

➤ Technical Coordinator

> Attiko Metro S.A.

Objectives

- Assessment of the impact of large transport projects on mobility, traffic, transit operations and environment
- **>** Subobjectives
 - > Develop a repository of multimodal information
 - ➤ Establish accurate predictions of demand (multiple modes and interacting projects) in future long term horizons
 - ➤ Develop a macroscopic multimodal simulation tool to test scenarios of future transit demand and traffic demand evolution
 - Establish efficient traffic management strategies to enable sustainable growth of the new project

Current Situation -1

➤ Intercity bus terminals in Athens

- ➤ Kifisos Terminal Terminal 1
- ➤ Liosion Terminal Terminal 2

➤ Terminal 1

- > Serves most of the passenger demand
- ➤ Lack of public transport connection
- > High use of private cars and taxis
- > High congestion levels and long queues

➤ Terminal 2

- ➤ Significant lower passenger demand
- ➤ Accessible by public transport
- > Higher percentage of PT use

Current Situation -2

- ➤ No space for parking in the terminals
 - ➤ Illegal parking
 - > Frequent stops
 - > Deterioration of the already overloaded road network
- > Road network around the terminals
 - ➤ Low capacity
 - ➤ Insufficient geometric characteristics
 - ➤ High demand cannot be served
- ➤ High demand consists of
 - ➤ Users of the intercity busses
 - ➤ Passing through traffic
 - ➤ Intercity buses

The New Terminal

- ➤ Service point of all trips
- ➤ Multimodal transportation center

➤ High PT accessibility and use

- ➤ 17 public transportation lines
- > 5 new PT lines will be constructed
- > Underpass connection with metro station

▶ Parking facilities

- ➤ Parking garages
- ➤ Park&Ride facilities
- ➤ Kiss&Ride areas

The Near Area Regeneration

15th World Conference on Transport Research 26 - 31 May 2019 Mumbai, India

➤Now:

- ➤ Degraded, risky
- ➤ Abandoned construction sites
- ➤ Abandoned factories
- ➤ Low land use exploitation

>After:

- ➤ Economic and social upgrade
- ➤ Area redevelopment
- > Construction of hotel, cafes, commercial facilities

Methodology

- ➤ Define the influence area of the new project
- ➤ Data collection

- ➤ Passenger Demand Prediction and Urban
 Traffic Prediction → ARIMA modeling
- ➤ Traffic Simulation model and Capacity analysis → AIMSUN MODEL

Study Area

Three study areas:

- ➤ Kifisos Bus Terminal (Terminal 1)
- ➤ Liosion Bus Terminal (Terminal 2)
- ➤ New Bus Terminal

Data collection -1

Study Areas: Terminal 1 and Terminal 2

- > Typical day and public holiday
- Morning and evening peak hour
- > Passenger demand
- Number of intercity buses
- Mode choice (personal interviews)
- > Traffic counts at the entrance and exit of the terminals
 - Passenger cars
 - > Taxis
 - > Trucks
 - Motorcycles

George Yannis, Impacts of Large Urban Regeneration Projects: The case of the New Athens Intercity Bus Terminal

Data collection -2

Study Area: Near and greater area of the new terminal

- ➤ Detector data
 - > 74 loop detectors
 - ➤ Volume, speed, density
 - ➤ Typical weekdays and Sunday
 - ➤ May and August
- ➤ Traffic counts
 - ≥ 23 intersections
 - > Typical day
 - ➤ Morning and evening peak hour
 - Three vehicle classes (passenger cars (incl. taxis), heavy vehicles, motorcycles)

George Yannis, Impacts of Large Urban Regeneration Projects: The case of the New Athens Intercity Bus Terminal

Passenger Demand Prediction

> Factors influencing passenger demand

- > Economic crisis
- ➤ Increased unemployment rate
- > GDP

≻Indicator I

- > Ration of passenger demand to GDP per capita
- > Historic passenger data
 - **>** 1998, 2006, 2017
- >ARIMA (p,q,d) model
 - ➤ Best model ARFIMA (0,0.14,0)
 - ➤ MAPE 3,9%
- ➤ Passenger demand prediction
 - **>** 2020, 2030, 2040

	Coef.	Std. Err.	Z	P> z
constant	1.193	0.161	7.420	0.000
AR (1)	0.875	0.086	10.140	0.000

- ➤ Traffic generated by terminal operation Entrance
 - ≥8% during morning and evening peak hour
 - ➤ Up to 16% during morning peak hour on a non-typical day
- ➤ Traffic generated by terminal operation Exit
 - ≥ 39% during morning peak hour on a typical day
 - ➤ 47% during morning peak hour on a non –typical day
 - ➤ 43% during evening peak hour on a typical day
 - Low percentage during evening peak hour on a nontypical day
 - > traffic management measures and police enforcement

Non - Typical Day

- ➤ Increased share of private passenger cars
- ➤ Taxi share can be up to 30%
- ➤ Taxi share above 50% during evening peak hour on a non-typical day
- ➤ Adverse traffic conditions at terminal exit LOS E

➤ Traffic generated by terminal operation – Entrance

- ➤ More than 70% during morning and evening peak hour on a typical day
- ➤ Over 80% during morning peak hour on a non typical day
- ➤ Around 50% during evening peak hour on a non-typical day
- ➤ Traffic generated by terminal operation Exit
 - ➤ Around 30% during morning peak hour on a typical and non-typical day
 - ➤ Around 40% during evening peak hour on a typical and non-typical day

- ➤Increased share of private passenger cars
- Significant share of taxis and motorcycles concerning the traffic due to terminal operation
- ➤ Good traffic conditions at the terminal exit and entrance LOS B

Results – Near and Greater Area

Traffic model development in AIMSUN software

- > Traffic volumes (passenger cars, taxis, heavy vehicles)
- > Bus routes, schedules and volumes
- > Mode choice of additional traffic due to
 - > Terminal operation (passenger demand)
 - ➤ Other facilities (hotel, commercial center, etc)
- ➤ Model calibration
 - ➤ GEH Indicator
- > 17 different scenarios
 - > Horizons 2017, 2020, 2030
 - ➤ Morning/Evening peak hour/holidays
 - > Changes in road segments and infrastructures
 - > Intercity bus routes
 - > Traffic management strategies (changes in signal plans)

Results – Near and Greater Area

- ➤ Traffic analysis of the 17 scenarios
 - ➤ Delays in all 23 intersections
 - ➤ LOS in all 23 intersections
- ➤ Comparison with current situation
 - ➤ Differences in delays
 - ➤ Change in LOS

Best scenario identification

➤ Volume maps for the 17 scenarios

Intersection id		Current situation	Best Scenario	Difference (%)
20	delay	40.6	49	21%
	LOS	D	D	-
18	delay	50.0	61	22%
	LOS	D	Е	▼
3	delay	177.9	217	22%
	LOS	F	F	-
17	delay		17	-
	LOS		В	-

Conclusions

- Transportation projects and urban regeneration and redevelopment actions lead to
 - > Areas upgrade
 - > Accessibility levels upgrade
 - > Traffic and environmental conditions enhancement
- ➤ New intercity bus terminal in the city of Athens
 - > Improve traffic conditions around the existing terminals
 - > Shift towards public transportation
 - Improvement of traffic conditions around the new terminal
 - > Implementation of changes in signal plans in critical intersections

Challenges

- ➤ New project will bring massive change in the urban dynamics → prediction of traffic and passenger demand is challenging
- ➤ Need for an inclusive transport modeling approach (larger influence area will accommodate more meaningful interactions and will improve predictions
- ➤ Holistic scenarios that take into consideration not only adjacent changes but also city level interventions

Impacts of Large Urban Regeneration Projects: The case of the New Athens Intercity Bus Terminal

Foteini Orfanou¹, Eleni I. Vlahogianni¹, George Yannis¹, Ioannis Golias¹ Constantinos Moraitis²

¹School of Civil Engineering, Department of Transportation Planning and Engineering ²School of Architecture, Department of Architectural Language, Communication and Design