Investigating the Correlation between Driver's Characteristics and Safety Performance

Dimitrios I. Tselentis, PhD, Katerina Folla, Vassiliki Agathangelou, George Yannis, PhD

Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece
Scope

- **Interaction** of driving behavior’s elements with each other
- Definition of the overall **traffic behavior** of the driver
- Identification of those characteristics that contribute to a more **risky driving** behavior compared to those of more cautious drivers

Correlation of driver's characteristics and road safety performance
Background (1/2)

- **Road accidents factors**
 - Vehicle
 - Road environment
 - Human factor

- **Driving behaviour characteristics**
 - Speeding
 - Harsh braking/ acceleration/ cornering
 - Understanding, perception and quality of traffic participation
 - Seatbelt use
 - Mobile phone use
Background (2/2)

Literature Review findings:

- Development of a driver's **risk indicator** with aim to assess the effects of driver's characteristics on road safety.

- Use of **factor analysis**, to minimize the dimensionality of a dataset and identify the critical factors that describe adequately driving behavior.

- Use of **cluster analysis**, to classify drivers as "less risky" and "risky" or "efficient" and "inefficient" drivers.

- **Drivers’ self-assessment** in conjunction with feedback for their actual driving behavior may reduce their driving risk.
Methodology

Statistical analysis of the selected data in two steps:

- **Factor analysis to reduce the dimensionality of the dataset and identify the main factors**
 - Significant number of variables
 - Correlation between the variables
 - Collation of variables into factors
 - Interpretation of the factors

- **Multiple linear regression model**
 - Continuous (dependent) variable Y
 - Explanatory (independent) variables X
 - No correlation among the independent variables

\[Y_i = \beta_0 + \beta_1 * X_{1i} + \beta_2 * X_{2i} + \beta_3 * X_{3i} + \cdots + \beta_k * X_{ki} + \epsilon_i \]
Data collection (1/2)

- **On-road driving experiment**
 - Assessment of **12 participants** on 16 driving characteristics
 - **8.8 kilometers** of urban and interurban road network
 - **21 minutes** total travel time
 - **Interurban** section was selected in the analysis
 - **In-car** safety behavior expert
Data collection (2/2)

- Survey
 - Questionnaire of **78 questions**
 - Basic **demographics** (age, gender, education, etc.)
 - Driving **experience** (kilometers travelled inside and outside urban areas, etc.)
 - Potential **offending** behavior (number of accidents, traffic infringements, etc.)
 - **Self-evaluation** questions about driving behavior (risky driving, steep acceleration, how cautious is as a driver, etc.)
Table 1: List of driving indicators used for the assessment of driver's performance

<table>
<thead>
<tr>
<th>a/a</th>
<th>Indicator</th>
<th>a/a</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Speed adaptation</td>
<td>9</td>
<td>Understanding, perception and quality of traffic participation</td>
</tr>
<tr>
<td>2</td>
<td>Braking</td>
<td>10</td>
<td>Crossing or junction</td>
</tr>
<tr>
<td>3</td>
<td>Accelerating</td>
<td>11</td>
<td>Anticipation and perception of road signs and traffic signals</td>
</tr>
<tr>
<td>4</td>
<td>Turning</td>
<td>12</td>
<td>Joining the traffic stream</td>
</tr>
<tr>
<td>5</td>
<td>Headways</td>
<td>13</td>
<td>Visual behavior and communication</td>
</tr>
<tr>
<td>6</td>
<td>Lateral Position</td>
<td>14</td>
<td>Mirror use</td>
</tr>
<tr>
<td>7</td>
<td>Ability to choose the correct lane</td>
<td>15</td>
<td>Use of direction indicator</td>
</tr>
<tr>
<td>8</td>
<td>Lane change</td>
<td>16</td>
<td>Steering firmness</td>
</tr>
</tbody>
</table>
Main factors (1/2)

- **4 factors** are extracted, from which only the three first variables are analyzed, since the last one cannot be adequately interpreted.
- All 3 factors explain the **68.54%** of the total variance.
- These factors describe drivers’ characteristics and their perceptions on their behavior.
Table 2: Variable loadings on the estimated factors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>In how many accidents were you involved as a driver?</td>
<td>.740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During the last two years, how many times did you offend the Traffic Law while driving?</td>
<td></td>
<td>.714</td>
<td>-.541</td>
<td></td>
</tr>
<tr>
<td>At what extent do you keep the speed limits while driving on motorways?</td>
<td>-.926</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How aggressive would you assess yourself as a driver?</td>
<td></td>
<td>-.667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How often do you consider your braking to be harsh?</td>
<td>.860</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>How often do you consider your acceleration to be harsh?</td>
<td>.680</td>
<td>.660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How often do you consider your turning to be harsh?</td>
<td>.898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking</td>
<td></td>
<td>-.523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerating</td>
<td></td>
<td>.589</td>
<td>.625</td>
<td></td>
</tr>
<tr>
<td>Headways</td>
<td></td>
<td></td>
<td>-.550</td>
<td>.653</td>
</tr>
</tbody>
</table>
Dependent variable:
- Overall on-road driving performance score (Indicator of driver’s overall performance under normal driving conditions, as assessed by an expert, at a scale from 0% to 100%)

Independent variables:
- Years of driving
- Headways (participant’s distance from the vehicle in front)
- Self-Efficiency (participant’s self-assessment on driving efficiency)
- Defensive driving (participant’s ability to forecast, identify and take all necessary actions to safely avoid potential accident risks)
Linear regression model (2/2)

Table 3: Parameter estimates and fit of the linear regression model

<table>
<thead>
<tr>
<th></th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>(Constant)</td>
<td>.449</td>
<td>.056</td>
<td>8.067</td>
<td>.000</td>
</tr>
<tr>
<td>Years of driving</td>
<td>.010</td>
<td>.003</td>
<td>.569</td>
<td>3.250</td>
</tr>
<tr>
<td>Headways 4</td>
<td>.142</td>
<td>.044</td>
<td>.555</td>
<td>3.198</td>
</tr>
<tr>
<td>Efficient driver 3</td>
<td>.141</td>
<td>.049</td>
<td>.554</td>
<td>2.857</td>
</tr>
<tr>
<td>Defensive driving 3</td>
<td>.108</td>
<td>.044</td>
<td>.424</td>
<td>2.444</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.721</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F statistic</td>
<td>8.155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions (1/2)

- **Driving experience** is the most important factor in predicting driving safety behavior and efficiency as expressed in the total driving assessment.

- Overall, the total set of actions/behavior that allows the driver to predict, identify and take appropriate action to avoid potential risk composes the factor of **defensive driving** and significantly affects total driving safety behavior.

- Keeping the appropriate **headways** from the vehicle ahead and self-reported dexterity have a positive impact on the overall performance indicator.
Conclusions (2/2)

The factors describing the correlation between driver safety features and performance can be grouped into three groups each of which includes:

- Drivers' perception of **superficial driving**, including features related to dangerous road behaviors.

- The perception of **aggressive behavior**, through questions related to the reported number of violations and errors as assessed in the experimental process.

- Drivers' perception of **cautious driving**, including the self-reported frequency with which the driver abruptly brakes, but also how well he keeps distances from the vehicle ahead.
Future research

- Implementation of the experiment with a larger number of participants, in different traffic conditions and other road environments (urban, motorway, high / low traffic, day / night etc.).

- Comparison between the findings of this research and the driving characteristics of a driver in a driving simulator.

- Use state-of-the-art technology for driver's behavior monitoring together with driving assessment by an expert.

- Further statistical analysis by applying other methods of a different family than the one selected.
Investigating the Correlation between Driver's Characteristics and Safety Performance

Dimitrios I. Tselentis, PhD, Katerina Folla, Vassiliki Agathangelou, George Yannis, PhD

Department of Transportation Planning and Engineering, National Technical University of Athens, Athens, Greece