Shaping the mobility in university campuses throughout ICT solutions

E. Campos Diaz1, M.T. Tormo Lancero1, P. Valero Mora1, P. Papantoniou2, E. Vlahogianni3, G. Yannis3

1University of Valencia, 2Technical University of Munich, 3National Technical University of Athens

Munich, 12 September 2019
Outline

- Background
- Objectives
- Survey Methodology
 - Interview
 - Questionnaire
- Surveys Results
- E-core model
 - Scope
 - Structure
- Conclusions
Background

- **Sustainable Urban Mobility Plans (SUMPs)** define a set of interrelated measures designed to satisfy the mobility needs of people.

- A **University Campus** is similar to an urban model and it could be used as a test area for mobility policies and tools.

- **Information and communications technology (ICT) tools** concern a collection of useful applications, services and tools for mobility areas.
Objectives

- **To analyze University Campuses** in order to obtain a defined state of art of data, policies and ICT tools concerning mobility from/to and inside Campus

- To evaluate the use of specific **ICT tools** on University Campuses from both experts as well general population

- To propose an integrated **ICT platform model** including Data-warehouse, DSS, ITS, enabling data collection, planning, management and monitoring
Methodology

- A **survey** has been developed and implemented within the framework of **CAMP-sUmp** (CAMPus sustainable University mobility plans in MED areas) project

- A survey has been developed consisting of a **questionnaire** and an **interview**

- The following **Universities** participated
 - Magna Graecia Foundation Catanzaro University
 - National Technical University of Athens
 - University of Malta
 - University of Valencia
 - University of Split
 - University of Cyprus
 - University of Bologna
Questionnaire topics:

- **Current mobility** - to present current mobility of the participants both regarding mobility from/to and inside the Campus
- **Desired Mobility** - to present the desired mobility of the participants both regarding mobility from/to and inside the Campus
- **Mobility problems** - to identify the mobility problems both regarding mobility from/to and inside the Campus.
- **Proposed measures/policies/tools** - to evaluate specific measures, policies and tools that are already implemented regarding the mobility from/to and inside the campus
- **Participant information**
The interview aimed to collect qualitative data (experts’ views) of each University regarding the following thematic areas:

- **Soft modes** Infrastructure
- **Public** transport
- **Car** related issues
- **Road infrastructure**
- **Environment** and energy
- **Mobility management**
- **Freight Infrastructure** and Management
- **Information and communications technology (ICT) tools**
- **Sustainable Urban Mobility Plans (SUMPs)**
Survey characteristics

<table>
<thead>
<tr>
<th>University</th>
<th>Location</th>
<th>Area (m²)</th>
<th>Students</th>
<th>Personnel</th>
<th>Questionnaires</th>
<th>Interviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 University of Catanzaro</td>
<td>Outside</td>
<td>260,000</td>
<td>11,000</td>
<td>500</td>
<td>104</td>
<td>9</td>
</tr>
<tr>
<td>2 National Technical University of Athens</td>
<td>Outside</td>
<td>1,000,000</td>
<td>13,500</td>
<td>3,400</td>
<td>124</td>
<td>8</td>
</tr>
<tr>
<td>3 University of Malta</td>
<td>Inside</td>
<td>194,452</td>
<td>11,500</td>
<td>600</td>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>4 University of Valencia (1 campus)</td>
<td>Outside</td>
<td>1,000,000</td>
<td>10,000</td>
<td>2,000</td>
<td>227</td>
<td>3</td>
</tr>
<tr>
<td>5 University of Valencia (2 campuses)</td>
<td>Inside</td>
<td>400,000</td>
<td>35,000</td>
<td>5,000</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6 University of Split</td>
<td>Inside</td>
<td>245,000</td>
<td>24,000</td>
<td>1,500</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>7 University of Cyprus</td>
<td>Outside</td>
<td>1,200,000</td>
<td>7,000</td>
<td>1,100</td>
<td>85</td>
<td>5</td>
</tr>
<tr>
<td>8 University of Bologna</td>
<td>Outside</td>
<td>6,570,023</td>
<td>85,000</td>
<td>3,000</td>
<td>100</td>
<td>9</td>
</tr>
</tbody>
</table>

- 5 campuses were located **outside** the city centre, 3 are located **inside** the city.
- 1,078 Questionnaires and 36 expert’s interviews were collected.
• The most important type of measures is “ICT tools to improve information to passengers”
• The lowest importance occurs in an ICT platform for car-pooling
The most important type of measures is "**ICT tools to improve information to passengers**"

The lowest importance refers to "**electronic monitoring of parking spaces**"
E-Core system scope

The e-Core System describes the integration of many **independent and self-contained nodes** to satisfy needs and purposes of sustainable mobility at Universities

- a set of **top-level assumption**, variables, actors, stages and nodes
- a **strategic plan** for designing an integrated sustainable mobility system
- a **top-level approach**
- **technology independent**
The e-Core System consists of 6 phases

1. **Users/providers** (diverse profiles which provide vital information to the system)

2. **Data Acquisition** (how the providers can provide the information to the System)

3. **Input** about mobility options

4. **Aggregated Information system** (data are aggregated gathered and organized in different blocks)

5. **Dissemination tools** (website, mobile apps, mobility card)

6. **Output** based on transport mode
CAMP-sUmp e-Core system

INPUTS
- Start and End Point
- Departure Time
- Automatic Geolocation On/Off
- Periodicity
- Accessibility Needs
- Faster Sustainable or Leisure Route
- Registration: ID User

MOBILITY OPTIONS
- YES/NO
- Student or Employee: Others

SELECTION OF NODES
- Gender
- 18

Carpool
- Others

DRIVER
- ID User
- Available Seats
- Fare
- Type of Vehicle
- Roundtrip Time
- Luggage
- Periodicity
- Parking Need

PASSENGER
- ID User
- Type of Vehicle
- Luggage
- Roundtrip Time
- Periodicity

SCHEDULE, LINES AND STOPS
- Frequencies
- Routing System
- Faster/Duration
- Less Transfer
- Leisure
- Intermodality
- Duration
- Cost
- Number of Passengers in Real Time
- Fares and Discounts
- Universal Accessibility
- Payment and Ticketing System
- Incidents
- Real Time Information
- Information Message Alerts to Passengers
- QR Data
- On Route Information
- Promotion and Awareness Campaigns
- Incentives
- Clean Vehicles
- CO2 Emissions Data
- Others

BUILDING LOCATION AND SERVICES
- University Users Data (Legal)
- Events & Remarkable Dates
- Parking Area
- Proposed Routes
- Bike Services and Information
- Fleet of Clean Vehicles and Charge Stations
- Incentives System
- Green Infrastructure
- Campus Mobility in Side and Indoor
- Freight Management
- Promotion and Awareness Campaigns, Social Media
- University Carpool App
• **ICT tools** apply in almost all thematic areas and play a crucial role for every campus sustainable mobility plan

• Campuses have different mobility **gaps/needs** based on their location (inside/outside the city)

• The tools that provide **information to passengers** were found to be the most important based on the questionnaire

• The **architecture** of the proposed System is based on European frameworks for standardization and ITS design

• **E-Core system** is an integrated ICT platform model enabling data collection, planning, management and monitoring