TRA2020 – Rethinking transport Towards clean and inclusive mobility • Helsinki 27–30 April 2020

State of the art on measuring driver state and technology-based risk prevention and mitigation Findings from the i-DREAMS project

Susanne Kaiser^a, Christos Katrakazas^b, Eva Aigner-Breuss^a, Fran Pilkington-Cheney^c, Apostolos Ziakopoulos^b, George Yannis^b, Tom Brijs^d

^aKFV, Austrian Road Safety Board, Schleiergasse 18, 1100 Wien, Austria

^bNational Technical University of Athens, Department of Transportation Planning and Engineering, 5 Heroon Polytechniou str., GR-15773, Athens, Greece ^cLoughborough University, Transport Safety Research Centre, LE11 3TU Loughborough, United Kingdom

^dUHasselt, Transportation Research Institute (IMOB), Science Park – Building 5, 3590 - Diepenbeek, Belgium

Outline

The i-DREAMS Project
Literature Review Methodology
Significant findings
Next steps

The i-DREAMS project (1)

13 Project partners:

National Technical University of Athens

Universiteit Hasselt, Loughborough University, Technische Universität München, Kuratorium für Verkehrssicherheit, Delft University of Technology, University of Maribor, OSeven Telematics, DriveSimSolutions, CardioID Technologies, European Transport Safety Council, POLIS Network, Barraqueiro Transportes S.A.

Duration of the project:

36 months (May 2019 – May 2022)

The i-DREAMS project (2)

Definition, development, testing and validation of a context-aware 'Safety Tolerance Zone' for driving

MONITORING

POST-TRIP INTERVENTIONS

IN-VEHICLE INTERVENTIONS

Measurements considered in i-DREAMS

Literature Review

Systematic Literature Review

Identification of terms
Title & Abstract screening
Focus on underlying constructs (e.g. emotions, distraction types), indicators, technical equipment, results and conclusions

Factor	Key words (without word stem variations)	Screened papers	Included papers
Task Demand	"task demand" AND "driving measures" OR "performance measurements" OR "driver characteristics" OR "driving monitoring" OR "workload" OR "traffic conditions" OR "traffic" OR "weather" OR "road layout" OR "time of day"	413	11
Distraction "	"distraction" OR "distracted" OR "inattention" OR	447	32
	"inattentive" AND "driver monitoring" OR "driver measure"	4 /	
Emotions	"emotion" OR "affect" OR "arousal" OR "stress" OR "anger"" AND "measure" OR "driver monitoring" OR "workload" OR "physiological" AND "driving" OR "road safety" OR "traffic" OR "driving performance" OR "car"	403	38
Fatigue and sleepiness	"fatigue" OR "sleep" OR "drowsy" OR "alert" OR "monotonous" OR "tired" OR "bored" OR "weariness" OR "time on task" AND "driver monitoring" OR "physiological measure" OR "blink" OR "perclos" OR "yawning" OR "eye movement" AND " drive" OR "car" OR "professional driver" OR "commercial driver" OR "raffic" OR "road safety"	1,545	187

Task Demand

 Task demand as result of exogenous factors

Road

- Traffic environment
- Weather
- •Time of day

•Task demand as cognitive workload

Road layout	Traffic environment	Weather	Time of day
High number of	Annual average daily	Rain	Darkness
lanes	traffic	• Sun	Twilight
 Narrow lanes 	Through traffic per	Wind	Peak hours
 Wider lanes with 	lane	Frost	
high traffic volume	Congestion	Snow	
Length of		Fog	Train drivers
deceleration lane			darkness
 Roundabouts 	Train drivers	Train drivers	
 Highway curves 	Track changes	Obstruction due to	
Geometric design	Monotony of environment	weather condition	
	Behaviour of		
	passengers		
	Obstruction of tracks		

Table 1: Exogenous factors affecting task demand

Task Demand - Cognitive load

- •Studies mainly on road layout, traffic condition, weather
- Rarely on time of day
- •Measured most frequently by physiological indicators, e.g. ECG
- Other indicators measured through

Blink rate

o Sharper road curves

• Changes in road type

Horizontal spread

- •EEG
- Vehicle kinematics
- •Skin conductance
- Occular indicators

↑ Oxygenated haemoglobin

 Changes in road type

↑ Speed variation

- Increase in HGV composition
- Shorter time headway

Acceleration signatures

Changes in road type

↑ SCR

- Higher visibility conditions
- Changes in road type

↓ Heart rate

- o dense traffic
- o adverse weather (fog)
- o transition highway to urban traffic

↑ Heart rate

- Lange changing events
- Transition motorway to urban traffic

Task demand findings

Mainly simulator experiments

No thresholds provided

Most reliable indicators (work load)
Cardiac measures (heart rate, heart rate variability
Duration of fixations

Attention and Distraction

Most studies on visual distraction

•Main method used: eye-tracking

•Very heterogenous study designs and equipment > excacerbates comparison

•No thresholds for driver behaviour indicators

•No mode-specific measurement methods

Mental State

- More studies on sleepiness than fatigue and in simulators
- Most in-built commercial systems use occular measures (PERCLOS and Blink Duration)
- •Source of reduced attention and distractability needs to be defined for interventions
- •Consideration of professional vs. nonprofessional drivers
- •Mental state', 'emotions', etc. are theoretical constructs that need a decisive definition.

Conclusions & recommendations

Most of the evidence is available for car drivers.
'Using at least two approaches for driver state monitoring is beneficial for validity and reliability
Cameras, eye tracking, and heart rate sensors should be considered

•Drivers' traits and characteristics should be explored.

•Thoroughly testing indicators and measures at the simulator stage is indispensable

State of the art on measuring driver state and technology-based risk prevention and mitigation Findings from the i-DREAMS project

Susanne Kaiser^a, Christos Katrakazas^b, Eva Aigner-Breuss^a, Fran Pilkington-Cheney^c, Apostolos Ziakopoulos^b, George Yannis^b, Tom Brijs^d

traconference.eu #TRA2020

Hosted and organised by

#rethinkingtransport 🛛 🕑 @

@TRA_Conference

