Towards behavioral models for autonomous driving acceptance

Paper ID# 718 Foteini Orfanoua, Truls Vaab, Eleni I. Vlahogiannia, George Yannisa
aNational Technical University of Athens, 5, Iroon Polytechniou, Athens GR-15773 Athens Greece
bTransportokonomisk Institutt, Gaustadalleen 21, Oslo 0349, Norway

Introduction

- Acceptance of users relies on the understanding and trust automation.
- Development of AVs successfully handling the risks of traffic as an “average driver” is necessary.
- Modelling behaviour of an AV is vital for safe vehicles of high driving performance.
- Integration of existing models to autonomous vehicles requires modelling the behaviour of the AV “driver”/operator.

Scope of this work

- Analysing the aspects of AV “driver”/operator behaviour.
- Conceptualizing the changes that should be introduced to existing behavioural models.
- Addressing the requirements of AV traffic and road safety and increase the acceptance.
- Three popular modelling alternatives:
 - Summala’s Multiple Comfort Zone
 - Fuller’s Risk Allostasis Theory (RAT)
 - Vaa’s Risk Monitor Model (RMM)

Driver Behavioral Models

- Change of key concepts, conceptions and theories
- The three analysed models:
 - Shared basis in neuroscience, i.e. adopting Damasio’s paradigm
 - Have been further developed for being well suited to state hypotheses to be tested in contexts associated with AV

Summala’s Multiple Comfort Zone

- Incorporates factors influencing safety margins
- TTC, time to lane crossing, speed level and time headway, within an acceptable range \rightarrow satisfaction, comfort
- Comfort zone enables drivers to react properly

Factors influencing driving behavior and comfort zone boundaries

<table>
<thead>
<tr>
<th>Sufficient space</th>
<th>Road system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient time</td>
<td>Roadway complexity</td>
</tr>
<tr>
<td>Vehicle characteristics</td>
<td>Driver experience</td>
</tr>
<tr>
<td>Speed limits</td>
<td>Driver’s response style</td>
</tr>
</tbody>
</table>

Fuller’s Risk Allostasis Model (RAT)

- Feeling of risk within the preferred range.
- This feeling defines, controls and influences driving behaviour
- Driver behaviour changes for maintaining the feeling of risk within the range
- Speed choice and time or distance headways adjustment for feeling of risk maintenance

Factors influencing feeling of risk

<table>
<thead>
<tr>
<th>Driver’s motivation</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver capabilities</td>
<td>Road environment</td>
</tr>
<tr>
<td>Human factors</td>
<td>Vehicle characteristics</td>
</tr>
</tbody>
</table>

Vaa’s Risk Monitor Model (RMM)

Challenges

- Lack of relevant data for understanding AV behavior under various traffic and weather conditions is critical
- Ensure safety of drivers and other road users under autonomous mode
 - Technology
 - Hacking risks
- “Human vs machine” \rightarrow public acceptance and technology adoption
- Should the humans be adapted to the machine behavior or the machine to the different driving behaviors?

Conclusions

- AV behavioral model determines public acceptance and adoption
- AVs should have increased levels of safety, security and comfort
- AVs should be able to adopt in different (non)emergency and extreme conditions
- Definition of parameters \rightarrow Extension of behavioral models for including autonomous operation

Acknowledgments

The analysis is conducted within the framework of Drive2theFuture project (Needs, wants and behavior of “Drivers” and automated vehicle users today and into the future” funded by European Commission under the MG-3.3.2018: “Driver” behavior and acceptance of connected, cooperative and automated transport; Research and Innovation Action (RIA).

More information

Foteini Orfanou
forfanou@central.ntua.gr