TRA2020 – Rethinking transport Towards clean and inclusive mobility • Helsinki 27–30 April 2020

Correlation of driver behaviour and fuel consumption using data from smartphones

Paper ID 216

Evanthia Michelaraki^a, Armira Kontaxi^a, Panagiotis Papantoniou^a, George Yannis^a

^aNational Technical University of Athens, Department of Transportation Planning and Engineering, 5 Heroon Polytechniou str., GR-15773, Athens, Greece

Objective

- Investigate the effect of driver behaviour on fuel consumption using data from smartphones
- Determine the various parameters that affect driving performance and how they interact with each other in order to predict fuel consumption

Outline

- Background
- Past Limitations
- Data Flow
- Risk Exposure Indicators
- Risk Driving Indicators
- Experimental Process
- Data Collection
- Methodology
- Analysis Results
- Conclusions
- Future Challenges

Background

Driver

- Aggressive driving style affects fuel economy and consumption
- Eco-driving knowledge and reward are the most effective incentives for encouraging improved driver performance

Vehicle

 In-vehicle driver behaviour monitoring systems increase road safety and reduce fuel consumption

Environment

- Up to 30% less fuel consumption
- Significant reduction of pollutants emissions (CO, CO₂, NO_x)
- 10-25% less accidents

Past Limitations

Limiting barriers existed so far:

- Mobile phone technology
- High cost of in-vehicle data recording systems (i.e. OBD)
- Low penetration rate of smartphones and social networks
- Inability to manage and exploit Big Data

Current **technological advances** make it substantially easier for experts to collect and exploit data easier and more accurately through smartphones

Data Flow (1/2)

- A user-friendly smartphone App recording driver's behaviour using mobile phone sensors, without any user involvement (automatic start / stop)
- A variety of APIs reading sensor data recorded and temporarily store it to mobile phone
- Data transmission from the mobile App to the central database via an appropriate communication channel such as:
 - Wi-Fi network (online)
 - Cellular network such as a 3G/4G network (online)
 - -Bluetooth (offline)

TRA 2020 HELSINKI

Data Flow (2/2)

- Data is stored in a sophisticated database where managed and processed
- Indicators result from the mobile phone data process using:
 - Machine Learning algorithms
 - Big data mining techniques
- Visualization of the metrics and scores for the evaluation of the driving behaviour through:
 - Mobile App
 - Web Portal
- All the aforementioned procedures use the latest technologies in compliance with GDPR
 TRA 2020
 HELSINKI

Risk Exposure Indicators

- Total driving duration (seconds)
- Total distance travelled (mileage)
- Type of the road network used (highway, rural or urban)
- Time of the day driving (rush hours, risky hours)
- Weather conditions (fog, rain, snow)

TRA 2020 HELSINKI

Risk Driving Indicators

- Speeding (distance and time of driving over the speed limit, speed limit exceedance)
- Number of harsh events (braking and acceleration)
- Driving aggressiveness
- Driver distraction (caused by mobile phone use during driving)
- Eco-driving (smooth use of the accelerator, steering, transmission and brakes)
 TRA 2020 HELSINKI

Experimental Process

- Naturalistic driving experiment
- The sample of the analysis consists of 17 participants, aged 20-35
- 2 different driving scenarios

HELSINK

- 2 months normal driving (before)
- 2 months eco-driving (after)
- A large database of thousands trips

Data Collection

Methodology (1/2)

4 Lognormal Regression models were developed to identify driving characteristics influencing the fuel consumption:

Model 1: Predicting fuel consumption – **overall model** Model 2: Predicting fuel consumption driving on **highway**

Model 3: Predicting fuel consumption driving on **rural road**

Model 4: Predicting fuel consumption driving on **urban road**

Methodology (2/2)

Independent parameters included in the statistical models:

- Before-after
- Average speed
- Harsh acceleration
- Average deceleration
- Mobile phone use
- Risky hours distance
- Gender

TRA 2020

Educational level

	Variables	Model 1 (overall model)				Model 2 (highway road)				Model 3 (rural road)			Model 4 (urban road)				
		b _i	t	e _i	e _i *	b _i	t	e _i	e _i *	b _i	t	e _i	e _i *	b _i	t	e _i	e _i *
	Constant	1,335	16,182			1,413	15,990			1,371	21,930			1,365	22,210		
	Before-After	-0,056	-2,971	-0,016	1,000	-0,042	-2,271	-0,012	1,696	-0,057	-2,764	-0,008	1,000	-0,056	-2,868	-0,007	1,000
	Avgspeed	0,001	1,787	0,054	3,404	0,001	2,033	0,105	14,756	0,001	2,496	0,046	5,510	0,002	3,267	0,030	4,596
	На	0,001	2,613	0,096	6,125	0,007	2,072	0,028	3,900	0,002	2,776	0,050	6,095	0,002	5,398	0,116	17,736
1	Avdecel	0,029	1,986	0,070	4,440	0,021	2,037	0,024	3,313	0,020	1,910	0,042	5,126	0,043	2,907	0,106	16,286
	MobileUse	-0,158	-2,056	-0,038	2,424	-0,047	-1,829	-0,007	1,000	-0,149	-2,630	-0,038	4,646	-0,079	-1,736	-0,026	3,983
	Riskyhours	0,003	2,581	0,041	2,592	0,002	2,036	0,029	4,074	0,003	2,465	0,030	3,660	0,003	2,498	0,035	5,371
	Duration					0,000	-3,371	-0,082	11,432								
	Gender	-0,087	-4,996	-0,023	1,479	-0,114	-5,607	-0,031	4,299	-0,087	-5,121	-0,026	3,181	-0,091	-5,995	-0,024	3,733
	Educ_level	-0,101	-7,386	-0,023	1,456	-0,113	-6,880	-0,026	3,585	-0,107	-7,500	-0,026	3,108	-0,102	-8,495	-0,023	3,550
	Years_drv									-0,016	-2,330	-0,017	2,000	-0,024	-3,634	-0,016	2,411
	R ²	0,620				0,637			0,656			0,704					

Analysis Results (1/2)

- The higher the **average speed**, the higher the fuel consumption
- Male drivers after getting improved appeared similar behaviour to female drivers before getting improved
- The higher the number of harsh accelerations occurred while driving, the higher the fuel consumption
- Male drivers tended to accelerate more frequently than female

TRA 2020

HELSINKI

Analysis Results (2/2)

- In urban driving, acceleration had the highest impact on fuel consumption
- **Deceleration** was identified as the second most influential variable
- In highways where speed limits are high enough, fuel consumption elevated considerably as the speed increased
- Mobile phone usage had the slightest influence on motorways
- Night-time driving was positively correlated with fuel consumption
 PRA 2020 HELSINKI

Independent Variables	Model 1 (overall model)	Model 2 (highway)	Model 3 (rural road)	Model 4 (urban road)
Before-after	1,000	1,696	1,000	1,000
Average speed	3,404	14,756	5,510	4,596
Harsh acceleration	6,125	3,900	6,095	17,736
Average deceleration	4,440	3,313	5,126	16,286
Mobile usage	2,424	1,000	4,646	3,983
Risky hours distance	2,592	4,074	3,660	5,371
Gender Educational level	1,479 1,456	4,299 3,585	3,181 3,108	3,733 3,550

Conclusions (1/2)

- A remarkable 15% reduction in fuel consumption
- By improving the way participants were considering the task of driving, a smoother and greener driver behaviour was achieved
- The higher the acceleration, the higher fuel consumption, especially in urban roads
- As the average speed increases, the fuel consumption increases, especially in highways. Eco-driving behavior significantly reduced average speed on all types of road
- The higher the average deceleration, the higher fuel consumption. Drivers managed to reduce unnecessary braking and saved fuel

Conclusions (2/2)

- The higher the **mobile phone use**, the lower the fuel consumption
- As the night-time driving increases, the fuel consumption increases
- **Driver characteristics** played a crucial role in driving performance (gender, age, experience)
- The vast majority of male drivers displayed less cautious behaviour during their trips and consumed more fuel than females
- Experienced drivers and most educated road users adopted a more conservative and ecological driving performance

Future Challenges

- Larger and more representative sample of drivers with different age groups
- Investigation of the effect of other driving factors (psychological status, fatigue or driving under influence of alcohol)
- Investigation of fuel economy performance with regards to vehicle characteristics (tire pressure, driving force, horse power, cubic capacity, weight or age)
- Investigation of the effect of type of fuel (gasoline, diesel, liquid petrol or compressed natural gas)

Correlation of driver behaviour and fuel consumption using data from smartphones

Paper ID 216

Evanthia Michelaraki^a, Armira Kontaxi^a, Panagiotis Papantoniou^a, George Yannis^a

"National Technical University of Athens, Department of Transportation Planning and Engineering, 5 Heroon Polytechniou str., GR-15773, Athens, Greece

traconference.eu #TRA2020

#rethinkingtransport @ @TI

Together with:

@TRA_Conference

Hosted and organised by

