Investigation of the impact of weather conditions to young drivers' behaviour and safety in cities

TRA2020 – Rethinking transport

Towards clean and inclusive mobility • Helsinki 27-30 April 2020

Paper ID 219

Maria Chaireti^a, Armira Kontaxi^a, Dimosthenis Pavlou^a, George Yannis^a

^aNational Technical University of Athens, Department of Transportation Planning and Engineering, 5 Heroon Polytechniou str., GR-15773, Athens, Greece

Outline

- Objective
- Background
- Driving simulator experiment
 - Overview of the experiment
 - Experiment design
- Data Collection
- Methodology
- Analysis Results
 - Modelling Mean Speed
 - Modelling Accident Probability
- Conclusions
- Future Challenges

Background

Precipitation (rainfall, rainfall intensity, snowfall)

- Driving in rain is safety critical situation, involving adversities like reduced pavement friction and impaired visibility
- Rainfall increases crash risk and most weather-related accidents occur during rainfall and in wet pavement conditions
- In Mediterranean countries drivers tend to compensate for the increased risk by adjusting their behaviour

Fog

2020

HELSINK

 Fog-related crashes have remarkably higher injury and fatality rates due to low visibility conditions

Objective

- Investigate the impact of weather conditions on different driving performance measures of young drivers on urban roads, through a driving simulator experiment
- Specifically, examine the effect of driving in different weather conditions in combination with road type (urban road), traffic characteristics (high/low traffic) and driver characteristics (gender, annual mileage, and driving habits)

Driving simulator experiment

Driving simulator

Foerst Driving Simulator (1/4 cab)

Road environment

• Urban: 1.7 km long, dual carriageway

Traffic scenarios

- QL : Low traffic 300 vehicles/hour
- QH : High traffic 600 vehicles/hour

Unexpected incidents at each trial

- Child crossing the road
- Old lady crossing the road

Experiment design

Sample

- 40 young drivers (18-30 years old)
- 24 men and 16 women

Familiarization

• The participant practiced in handling the simulator, keeping the lateral position of the vehicle, keeping stable speed, etc.

Procedure

 6 trials - rainy, foggy and good weather conditions under (low and high traffic conditions)

Data Collection

- Driving parameters extracted from the driving simulator experiment
 - Mean driving speed
 - Average reaction time
 - Average of Revolutions per minute
 - Lateral position of the vehicle
 - Average of headway distance etc.
- Demographic and driving behaviour data obtained from the questionnaire
 - Age, gender, driving experience, accident history, driving behavior during adverse weather conditions

Methodology

Lognormal linear regression to model mean speed

• The basic equation of the lognormal linear regression model is:

 $yi = \beta_0 + \beta_1 \chi_{1i} + \beta_2 \chi_{2i} + \dots + \beta_{\kappa} \chi_{\kappa i} + \varepsilon_i$

 $log(yi) = \beta_0 + \beta_1 \chi_{1\iota} + \beta_2 \chi_{2i} + \dots + \beta_{\kappa} \chi_{\kappa i}$

Binary logistic regression to model accident probability

• If the "utility function" is given by $U=B_0 + B_i \chi_i$, then the probability P is given by $P=e^u/(e^u+1)$

Analysis results – Mean speed (1/2)

Independent variables	Mean driving speed				
	βi	t	Elasticity	Relevant elasticity	
Driving in rain	-0,01	-1,66	-0,01	1	
Gender	-0,02	-3,55	-0,01	2,88	
Age	0,02	3,08	0,01	-3,09	
Average of Revolutions per minute	0,01	10,78	0,06	-24,27	
Lateral position of the vehicle	0,01	2,64	0,02	-7,45	
Accident with material damages	-0,02	-2,87	-0,01	1,75	
Enjoy driving	-0,04	-4,11	-0,03	10,57	
Speed reduction in rain	-0,02	-2,69	-0,01	4,71	
R ²	0,501				

Analysis results – Mean speed (2/2)

- The vast majority of male drivers displayed a more unsafe behaviour during their simulated routes, developing higher speed than female drivers
- The higher the lateral position of the vehicle, the higher the driving speed

Analysis results – Accident probability (1/2)

Independent variables	Accident probability				
	βi	Wald	Elasticity	Relevant elasticity	
Driving in rain	0,872	4,084	0,646	3,329	
Driving in fog	-1,738	6,140	-0,690	-3,556	
Traffic conditions	-1,172	6,397	0,194	1,000	
Gender	0,693	2,675	-0,478	-2,466	
Average of Revolutions per minute	0,002	3,843	2,031	10,469	
Average of headway distance	0,014	2,841	0,445	2,296	
Enjoy driving	-1,145	4,091	-0,420	-2,163	
Null log-likelihood	214,316				
Final log-likelihood	172,595				
Degrees of freedom	6				

Analysis results – Accident probability (2/2)

- Accident probability increases with the increase of the traffic density
- Two driving behavioral measures that have a negative effect on accident probability seem to be the average of revolutions per minute and the average of headway distance

Conclusions

HELSINKI

- Driving in rain leads to a small reduction of the mean speed, which however cannot outweigh the increase of the probability of getting involved in a road accident
- Driving under foggy conditions leads to a decreased accident probability, indicating drivers' compensation in adverse weather
- Regarding traffic conditions, results show that the accident probability increases with the increase of the traffic density, low to high traffic conditions

Future Challenges

- Larger and more representative sample of drivers with different age groups
- Investigation of the effect of other driving factors (psychological status, fatigue or driving under influence of alcohol)
- Different driving environments and different traffic conditions should be further investigated
- Implementation of other statistical methods for further statistical analysis and export of additional models

Investigation of the impact of weather conditions to young drivers' behaviour and safety in cities

Paper ID 219

Maria Chaireti^a, Armira Kontaxi^a, Dimosthenis Pavlou^a, George Yannis^a

"National Technical University of Athens, Department of Transportation Planning and Engineering, 5 Heroon Polytechniou str., GR-15773, Athens, Greece

traconference.eu #TRA2020

#rethinkingtransport 🤅

Together with:

@TRA_Conference

