Investigation of the impact of weather conditions to young drivers' behaviour and safety in cities

Paper ID 219

Maria Chairetia, Armira Kontaxia, Dimosthenis Pavloua, George Yannisa

aNational Technical University of Athens, Department of Transportation Planning and Engineering, 5 Heroon Polytechniou str., GR-15773, Athens, Greece
Outline

• Objective
• Background
• Driving simulator experiment
 • Overview of the experiment
 • Experiment design
• Data Collection
• Methodology
• Analysis Results
 • Modelling Mean Speed
 • Modelling Accident Probability
• Conclusions
• Future Challenges
Background

Precipitation (rainfall, rainfall intensity, snowfall)

• Driving in rain is safety critical situation, involving adversities like reduced pavement friction and impaired visibility
• Rainfall increases crash risk and most weather-related accidents occur during rainfall and in wet pavement conditions
• In Mediterranean countries drivers tend to compensate for the increased risk by adjusting their behaviour

Fog

• Fog-related crashes have remarkably higher injury and fatality rates due to low visibility conditions
Objective

• Investigate the **impact of weather conditions** on different driving performance measures of young drivers on urban roads, through a **driving simulator experiment**

 ▪ Specifically, examine the effect of driving in different **weather conditions** in combination with **road type** (urban road), **traffic characteristics** (high/low traffic) and **driver characteristics** (gender, annual mileage, and driving habits)
Driving simulator experiment

Driving simulator
 • Foerst Driving Simulator (1/4 cab)

Road environment
 • Urban: 1.7 km long, dual carriageway

Traffic scenarios
 • QL : Low traffic - 300 vehicles/hour
 • QH : High traffic - 600 vehicles/hour

Unexpected incidents at each trial
 • Child crossing the road
 • Old lady crossing the road
Experiment design

Sample
• 40 young drivers (18-30 years old)
• 24 men and 16 women

Familiarization
• The participant practiced in handling the simulator, keeping the lateral position of the vehicle, keeping stable speed, etc.

Procedure
• 6 trials - rainy, foggy and good weather conditions under (low and high traffic conditions)
Data Collection

- **Driving parameters** extracted from the driving simulator experiment
 - Mean driving speed
 - Average reaction time
 - Average of Revolutions per minute
 - Lateral position of the vehicle
 - Average of headway distance etc.

- **Demographic** and driving behaviour data obtained from the *questionnaire*
 - Age, gender, driving experience, accident history, driving behavior during adverse weather conditions
Methodology

Lognormal linear regression to model mean speed

• The basic equation of the lognormal linear regression model is:

\[y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + \varepsilon_i \]

\[\log(y_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} \]

Binary logistic regression to model accident probability

• If the “utility function” is given by \(U = B_0 + B_i x_i \), then the probability \(P \) is given by \(P = e^{u}/(e^{u}+1) \)
Analysis results – Mean speed (1/2)

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Mean driving speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>βi</td>
</tr>
<tr>
<td>Driving in rain</td>
<td>-0,01</td>
</tr>
<tr>
<td>Gender</td>
<td>-0,02</td>
</tr>
<tr>
<td>Age</td>
<td>0,02</td>
</tr>
<tr>
<td>Average of Revolutions per minute</td>
<td>0,01</td>
</tr>
<tr>
<td>Lateral position of the vehicle</td>
<td>0,01</td>
</tr>
<tr>
<td>Accident with material damages</td>
<td>-0,02</td>
</tr>
<tr>
<td>Enjoy driving</td>
<td>-0,04</td>
</tr>
<tr>
<td>Speed reduction in rain</td>
<td>-0,02</td>
</tr>
<tr>
<td>R²</td>
<td>0,501</td>
</tr>
</tbody>
</table>
The vast majority of male drivers displayed a more unsafe behaviour during their simulated routes, developing higher speed than female drivers.

The higher the lateral position of the vehicle, the higher the driving speed.
Analysis results – Accident probability (1/2)

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Accident probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β_i</td>
</tr>
<tr>
<td>Driving in rain</td>
<td>0.872</td>
</tr>
<tr>
<td>Driving in fog</td>
<td>-1.738</td>
</tr>
<tr>
<td>Traffic conditions</td>
<td>-1.172</td>
</tr>
<tr>
<td>Gender</td>
<td>0.693</td>
</tr>
<tr>
<td>Average of Revolutions per minute</td>
<td>0.002</td>
</tr>
<tr>
<td>Average of headway distance</td>
<td>0.014</td>
</tr>
<tr>
<td>Enjoy driving</td>
<td>-1.145</td>
</tr>
<tr>
<td>Null log-likelihood</td>
<td>214.316</td>
</tr>
<tr>
<td>Final log-likelihood</td>
<td>172.595</td>
</tr>
<tr>
<td>Degrees of freedom</td>
<td>6</td>
</tr>
</tbody>
</table>
Analysis results – Accident probability (2/2)

- Accident probability increases with the increase of the traffic density

- Two driving behavioral measures that have a negative effect on accident probability seem to be the average of revolutions per minute and the average of headway distance
Conclusions

• Driving in rain leads to a small reduction of the mean speed, which however cannot outweigh the increase of the probability of getting involved in a road accident.

• Driving under foggy conditions leads to a decreased accident probability, indicating drivers’ compensation in adverse weather.

• Regarding traffic conditions, results show that the accident probability increases with the increase of the traffic density, low to high traffic conditions.
Future Challenges

• Larger and more representative sample of drivers with different age groups

• Investigation of the effect of other driving factors (psychological status, fatigue or driving under influence of alcohol)

• Different driving environments and different traffic conditions should be further investigated

• Implementation of other statistical methods for further statistical analysis and export of additional models
Investigation of the impact of weather conditions to young drivers' behaviour and safety in cities

Paper ID 219

Maria Chairetia, Armira Kontaxia, Dimosthenis Pavloua, George Yannisa

aNational Technical University of Athens, Department of Transportation Planning and Engineering, 5 Heroon Polytechniou str., GR-15773, Athens, Greece