

5th Conference on Sustainable Urban Mobility Virtual CSUM2020

17-19 June 2020

Benchmarking Analysis of Road Safety Levels for an Extensive and Representative Dataset of European Cities

Presenter: Katerina Folla

Authors: Katerina Folla, Paraskevas Nikolaou, Loukas Dimitriou, George Yannis

Sponsors

Media

With the support of

Introduction

- 1,35 million people are killed in road accidents worldwide each year
- In the EU, in 2018, around 25.100 road fatalities were recorded
- Great discrepancies in road safety performance exist among the 28 EU countries
- At regional level, the disparities are even larger in the EU

Objectives and Methodology

Objective:

 To evaluate the road safety performance of EU urban regions, taking into account the evolution of road safety, transport and economic characteristics over the time period 2008-2016

Methodology:

- **Two procedure concepts** of benchmarking analysis (DEA) together with Tobit regression
 - to identify the best and under-performing regions
 - to identify the factors affecting the efficiency of the region's road safety performance

Data Description (1/2)

- Data for 101 NUTS 2 regions covering 13 European countries
- Data refer to the period 2008-2016
- Time-series data on:
 - Road accident fatalities
 - Population
 - Gross Domestic Product (GDP)
 - Vehicle Fleet
 - Length of road network
 - Length of motorways
- Sources of data: EU CARE database, Eurostat

Data Description (2/2)

More than 100

75 - 100 50 - 75

25 - 50Less than 25

- A geographical variation of fatality rates is obvious
 - higher fatality rates in Southern and Eastern **European countries**
 - lowest fatality rates in Northern countries
- Accident fatality rates, however, vary at a large scale among the regions within the borders of a country

Fatalities per million population by NUTS 2 region in the EU, 2017

Data Envelopment Analysis

- To identify under and best-performing regions in terms of road safety
- DEA method:

$$min\sum_{i=1}^{p} w_i y_{i,s}$$

Subject to $\sum_{i=1}^{p} w_i y_{i,s} \ge 1, s = 1, \dots, n$

$$w_i \ge 0, i = 1, ..., p$$

- where, $y_{i,s}$: ith indicator of the sth DMU (region)
 - w_i: the weight attributed to indicator y_{i.s}
 - n: total number of DMUs (i.e., 101)
 - p: total number of indicators

Tobit Analysis

- What determinants affect the efficiency of the region's road safety performance
- Mathematical formation of Tobit model

$$\begin{aligned} y_t &= X_t \beta + u_t & if \ X_t \beta + u_t > 0 \\ y_t &= 0 & if \ X_t \beta + u_t \le 0 \\ t &= 1, 2, \dots, N \end{aligned}$$

- where, N: number of observations (i.e., 101)
 - y_t: dependent variable (efficiency scores),
 - X_t: a vector of independent variables
 - β: a vector of unknown coefficients
 - u_t: an independently distributed error term

Results – DEA (1/2)

- Output: road fatalities
- Inputs: socio-economic, demographic and transport infrastructure characteristics
- 11 out of the 101 regions appeared to **best-perform** out of the years

Results – DEA (2/2)

- For the different socioeconomic, demographic and road infrastructure characteristics we have different benchmark regions
- Explanatory variable
 "Motorcycles": An underperforming region should focus on the benchmarking regions (e.g. Cataluna, Lazio, etc.), which are best-performing

Results – Tobit Regression

- Regions with a high population record more fatal accidents
- Regions with high **GDP** have also a good efficiency
- Motorway density in each region is positively correlated with the efficiency
- Number of vehicles and passenger cars are negatively correlated with efficiency

Variables/Year	2008	2009	2010	2011	2012	2013	2014	2015	2010
Intercept	2.537e- 01***	2.75e- 01***	3.52e- 01***	2.38e- 01***	3.49e- 01***	2.39e- 01***	3.25e- 01***	1.36e-01**	2.11e 01**
	(5.05e-02)	(4.94e-02)	(4.93e-02)	(4.83e-02)	(5.13e-02)	(5.03e-02)	(4.97e-02)	(5.23e-02)	(4.66e-
Population	-1.490e-	-1.53e-	-1.53e-	-1.36e-	-1.88e-	-2.06e-	-1.92e-	-1.65e-	-1.56
	07***	07***	07***	07***	07***	07***	07***	07***	07**
	(3.65e-08)	(3.62e-08)	(3.67e-08)	(3.67e-08)	(4.49e-08)	(3.95e-08)	(4.59e-08)	(4.86e-08)	(4.57e-
Vehicles	-1.866e-06*	-2.078e-06*	-2.32e-06*	5.84e-07* (2.42e-07)	-	-	-	-	-1.72e-
	(9.44e-07)	(9.23e-07)	(9.23e-07)						(8.51e-
Lorries	2 4510 06*	2 700 06**	2 170 06**		1.19e-	1.10e-	1.14e- 1.01e-	1.01e-	2 500 0
	(0.042.07)	2.708-007	(9.73e-07)	-	06***	06***	06***	06***	2.59e-0 (8.93e-
	(9.946-07)	(9.758-07)			(2.89e-07)	(2.89e-07)	(2.87e-07)	(2.97e-07)	
Motorcycles	9.095e-07*	8 340e-07*	8.41e-07*	1.19e-	8.12e=07*	3 98e-07	8 33e=07*	9 08e-07**	6 42e-(
	(3.87e-07)	(3.69e-07)	(3 59e-07)	06***	(3.62e-07) (3.62e-07)	(2.30e-07)	(2.30e-07) (3.44e-07)	(3.51e-07)	(3.25e-
	(3.070 07)	(3.6,6 07)	(3.570 07)	(3.43e-07)		(2.500 07)			
Passenger	1.790e-06.	1.991e-06*	2.21e-06*	-8.43e-07**	-1.99e-07.		-1.86e-07.	-2.50e-07*	1.57e-
Cars	(10.00e-07)	(9.79e-07)	(9.82e-07)	(2.88e-07)	(1.17e-07)		(1.13e-07)	(1.15e-07)	(9.00e-
Buses	4.52e-05**	4.54e-05**	3.29e-05*	5.369e-	3.96e-05**	3.977e-	3.90e-05**	5.89e-	5.05
	(1.41e-05)	(1.38e-05)	(1.43e-05)	05***	(1.50e-05)	05**	(1.44e-05)	05***	05**
				(1.418e-05)	(1.500 05)	(1.403e-05)	((1.47e-05)	(1.39e-
Motorway Density	4.75e-	4.53e-	4.22e-	4.888e-	4.49e-	4.718e-	4.375e-	4.79e-	4.486
	03***	03***	03***	03***	03***	03***	03***	03***	03**
	(8.26e-04)	(8.09e-04)	(7.94e-04)	(7.987e-04)	(8.56e-04)	(8.365e-04)	(8.14e-04)	(8.47e-04)	(7.28e-
Other Roads	1.02e-	1.22e-	7.36e-	1.234e-	9.34e-	1.085e-	9.40e-	1.42e-	1.236
	05***	05***	06***	05***	06***	05***	06***	05***	05**
	(2.18e-06)	(2.13e-06)	(2.10e-06)	(2.029e-06)	(2.11e-06)	(2.031e-06)	(2.01e-06)	(2.10e-06)	(1.90e-
GDP	3.11e-06** (1.03e-06)	3.59e-	3.76e-	3.445e-	4.14e-	3.118e-	4.31e-	4.31e-	4.316
		06***	06***	06***	06***	06***	06***	06***	06**
		(1.05e-06)	(9.54e-07)	(8.982e-07)	(9.48e-07)	(8.086e-07)	(8.76e-07)	(8.77e-07)	(7.66e-
Log-Lik.	28.21	30.61	31.11	32.08	24.26	26.92	28.15	24.88	32.4
AIC	-34.42	-30.23	-40.22	-44.16	-28.52	-35.83	-36.29	-29.76	-42.9

Note: Parenthesis denotes the standard error of the variables

-: denotes the non-statistically variables that were omitted from the model

Conclusions

- A straight forward methodological framework for assessing road safety performance at regional level
- Under- and best performing regions were identified, while for each variable examined different benchmark regions exist
- Depending on the priority areas of each region, the respective best-performing regions should be identified and their road safety policies should be followed as examples
- The high economic performance of the regions, the existence of upgraded road infrastructure network and the availability of public transport are associated with high road safety performance

Contact Details

Katerina Folla email: katfolla@central.ntua.gr Tel: +30 210 772 1155

Sponsors

Media

With the support of

REPORTED DEEXADAE REPORTED DEEXADAE NET MILENESS ERFORMEN