

5th Conference on Sustainable Urban Mobility Virtual CSUM2020

17-19 June 2020

Investigating the correlation of mobile phone use with trip characteristics recorded through smartphone sensors

Presenter: P. Papantoniou Author(s): A. Kontaxi, G. Yannis, P. Fortsakis

Sponsors

Media

With the support of

PERMITTER CONTRACTOR

AUXINESS & STRUCTURE

Introduction

- Accurate monitoring of driver behaviour has scientific and technical requirements
- The Internet of Things (IoT) constantly offers new opportunities and features to monitor and analyse driver behaviour through:
 - Wide use of smartphones and social media
 - Effective data collection and handling
 - Big Data Analysis

Research Scope

- Identify the critical driving parameters that affect mobile phone use while driving using data from:
 - Smartphone devices
 - Naturalistic driving experiments
- Examine whether driving characteristics, recorded by smartphones, affect and can therefore predict the use of mobile phone during driving

Trip parameters

- Driving behaviour characteristics
 - Speeding
 - Harsh braking/ acceleration/ cornering
 - Seatbelt use
 - Mobile phone use
- Travel behaviour characteristics
 - Total distance
 - Road network type
 - Risky hours driving
 - Trip frequency
 - Vehicle type

Smartphone data collection (1/2)

- A mobile application to record user's driving behaviour (automatic start / stop)
- A variety of APIs is used to read mobile phone sensor data
- Data is transmitted from the mobile App to the central database
- Data are stored in a sophisticated database where they are managed and processed

Smartphone data collection (2/2)

- Indicators are designed using:
 - machine learning algorithms
 - big data mining techniques
- The database analyzed was in .csv format
 - Drivers' trips are stored per row, the characteristics of which are stored in each column's variables
- During the 2-months timeframe of the experiment 11.987 trips from a sample of 100 car drivers have been recorded

Descriptive statistics

The average percentage of mobile use of the sample collected on a **driver basis**

The average percentage of mobile use **per road type**

Theoretical Background

- The examined variable is used as a binary regarding the entire trip in a form of yes/no use of mobile phone
- Therefore, binary logistic regression is selected as the appropriate analysis method
- Introduction of random effects to capture different driving behaviors and extend the models to Mixed Binary Regression Models

Results (1/3)

Mixed Binary Regression Models

Parameter	Overall Model		Urban Road		Rural road		Highways	
	В	P-value	В	P-Value	В	P-value	В	P-value
Intercept	-1.613	<0.001	-2.313	<0.001	-2.752	<0.001	-6.457	<0.001
Trip Distance	0.051	<0.001	0.182	<0.001	0.095	<0.001	0.025	<0.001
Workday	0.174	0.003	0.176	0.005	0.174	0.008	-	-
Morning Rush	-0.354	<0.001	-0.385	<0.001	-0.44	<0.001	-0.704	<0.001
Afternoon Rush	-	-	0.121	0.046	0.127	0.045	-	-
Average Speed	-0.010	<0.001	-0.007	0.017	0.008	<0.001	0.037	<0.001
Random effect (variance of random intercept)	1.475	<0.001	1.515	<0.001	1.472	<0.001	1.763	<0.001
Number of obs	11398		11398		11398		11398	
Number of drivers	82		82		82		82	
AIC	10888. 3		9517.6		9002.0		1637.7	

Results (2/3)

- **Trip distance** increases the odds of mobile phone use during the trip; the effect appears to be higher in urban areas, less in rural and the least in highways
- Driving on workdays compared to driving on weekends also increases the odds of mobile phone use
- Driving during morning rush hours (06:00-10:00) compared to the rest of the day decreases the odds of using the mobile phone during the trip

Results (3/3)

- On the contrary, **driving during afternoon rush hours** (16:00-20:00) increases the odds of using the mobile phone while driving.
- Average speed per trip was found to be negatively associated with the odds of mobile phone use on all road types and in urban areas
- However, when driving in rural areas and highways, it seems that the higher the average speed the higher the odds of mobile phone use

Conclusions

- The parameters of trip distance, workday and afternoon rush are statistically significant and positively correlated with the use of mobile phone
- Average speed and morning rush are statistically significant and negatively correlated with the use of mobile phone
- Future research should also focus on the improvement of the accuracy of the models, by exploring more variables and alternative modelling techniques

Contact Details

Panagiotis Papantoniou National Technical University of Athens Department of Transportation Planning and Engineering ppapant@central.ntua.gr

Sponsors

Media

With the support of

REPORTER OFFERATOR REPORTER OF EVENTS