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Abstract— Driving simulator and naturalistic driving studies 

are often used to understand driving behavior characteristics. It 

is essential to evaluate the traffic safety of driving behavior in 

real time, which is helpful to trigger interventions of Advanced 

Driver Assistance Systems (ADAS) to ensure the driving safety. 

Therefore, this paper aims to propose a framework of driving 

behavior safety level classification and evaluation in real time, 

which was validated by a case study based on a driving 

simulation experiment. The proposed methodology focuses on 

finding the optimal number of safety “levels” or “zones” for 

driving behavior, classifying the safety levels with the help of 

different clustering techniques, and evaluating the driving safety 

levels based on developed classification models in real-time. 

Three clustering techniques were applied, including k-means 

clustering, hierarchical clustering and model-based clustering. 

The optimal number of clusters was found to be four using k-

means), and the clusters of safety levels will be labelled as 

“normal” driving, “low risk” driving, “middle risk” driving and 

“high risk” driving. A Support Vector Machine (SVM) and a 

decision tree were thereafter developed as the classification 

model. The accuracy of the combination of model-based clusters 

and SVM models proved to be the best with four clusters, yet no 

significant difference to other models was found. 

Keywords—driving behavior safety levels, driving 

simulation, clustering, SVM, decision trees 

I. INTRODUCTION 

Road safety improvement is one of the goals introduced by 
EU in its “Zero Vision” [1]. Specifically, the aim is to cut 
European road fatalities and serious injuries down to zero. 
Following this aim, driving simulator studies and naturalistic 
driving studies are designed to better understand drivers’ 
behavior, as it is one of the main factors impacting road safety. 
With advanced technologies set to improve data collection, 
driving behavior is postulated to belong to one or more safety 
levels or zones, ranging from “normal” to “dangerous” 
driving. The goal of this paper is to propose a real-time 
classification and evaluation framework of driving behavior 
safety levels, which was validated by a case study based on a 
driving simulation experiment. Three clustering algorithms are 
proposed including k-means clustering [2], hierarchical 
clustering [3] and a model-based clustering [4], and the 
optimal number of clusters for each is also identified. The 
obtained clusters can be well visualized using advanced 
machine learning algorithms such as T-distributed Stochastic 
Neighbor Embedding (t-SNE) [5]. Support Vector Machines 
(SVM) and decision trees are then used to develop models for 
real-time safety level classification for new observations. The 
contents of the paper will be structured as follows. First, the 
overall methodology will be introduced, including the overall 
framework, and the formulation of the used clustering and 
classification (modeling) algorithms. Then the simulation 
design environment, and the data collection and variables of 

interest are presented. Afterwards, the results are described 
and analyzed. Finally, a conclusion is given, focusing on the 
main findings but also limitations and future work needed. 

II. METHODOLOGY 

A. Overall Framework 

After improving the methodology presented by [6], this 
paper outlines the overall framework in Fig. 1 . It includes the 
main methodological components along with the information 
flow. Generally, each observation may hold multiple 
attributes, such as driving speed, headway, and lateral location 
in the lane. 

The methodology includes training and application steps. 
During the training step, archived surveillance data are used to 
(i) find the optimal number of clusters, presenting the ideal 
number of driving behavior safety zones or levels; (ii) identify 
the various driving behavior safety levels through clustering 
the available observations; and (iii) estimate the transition 
processes between these regimes. Finally, the information is 
stored into a knowledge base and further supports the 
application of the framework. During the application step, the 
appropriate classification model was selected to evaluate the 
driving safety levels with the input of the real-time 
surveillance data. 

In this study, three clustering algorithms including k-
means clustering, hierarchical clustering and a model-based 
clustering, were employed to find the optimal number of 
clusters. These three algorithms were then used to cluster the 
available observations. Finally, support vector machines 
(SVM) and decision trees were developed with the input of the 
labeled datasets based on three clustering algorithms to 
evaluate driving behavior safety levels and further to test the 
performance of developed models and clustering algorithms. 

 



  

Fig. 1  Overall framework of driving behavior safety level 

classifications and estimations. 

B. Clustering Algorithms 

a) K-means clustering 

K-means clustering is a popular unsupervised learning 
algorithms that solves the clustering problem. The Elbow 
method is one of the most popular methods for determining the 
optimal number of clusters in k-means clustering [6]. The 
basic idea in the k-means clustering to define clusters is that 
the total intra-cluster variation (known as total within-cluster 
variation) is minimized. The total within-cluster variation is 
popularly defined as the sum of squared Euclidean distances 
between items [7], and can be formulated as follows. 

𝑇𝑜𝑡𝑎𝑙. 𝐷 = ∑ 𝑊(𝐶𝑘)𝑘
𝑘=1 = ∑ ∑ (𝑥𝑖 − 𝜇𝑘)2

𝑥𝑖∈𝐶𝑘

𝑘
𝑘=1      (1) 

where 𝑥𝑖 is a driving behavior data observation belonging to 
the cluster 𝐶𝑘, and 𝜇𝑘 is the mean value of the observations 
assigned to the cluster 𝐶𝑘. 

The total within-cluster variation measures the 
compactness (i.e. goodness) of the clustering and it should be 
as small as possible. Each observation 𝑥𝑖  is assigned to the 
closest cluster based on the Euclidean distance between the 
object and the centroid (Eq. 1). There are five important steps 
to identify the optimal cluster number. They are (i) computing 
the clustering algorithm for different values of k; (ii) for each 
k, measuring the cost of the optimal quality solution (e.g., 
𝑇𝑜𝑡𝑎𝑙. 𝐷); (iii) plotting the curve of 𝑇𝑜𝑡𝑎𝑙. 𝐷 according to the 
results from (ii); (iv) the location of a bend (knee) in the plot 
is generally considered as the appropriate number of clusters. 

b) Hierarchical clustering 

Hierarchical clustering can create a hierarchy of clusters, 
and presents the hierarchy in a dendrogram to cluster 
multidimensional data sets, by evaluating dissimilarities of 
objects in the variables space, or similarities of variables in the 
objects space [8]. Some studies (i.e., [3][8]), describe in detail 
the hierarchical clustering methods. Hierarchical clustering 
adopts either an agglomerative technique, which is a series of 
fusions of the n objects into groups, or a divisive technique, 
which separates n objects successively into finer groups, to 
build a hierarchy of clusters. Since agglomerative techniques 
are more commonly used [9], they are used in this paper. 
Agglomerative hierarchical clustering methods are 
characterized by the distance metric and the linkage method. 

The distance metric presents the similarity between each 
cluster. Euclidean distance whose equation is 𝑑 =
∑ (𝑥𝑖 − 𝜇𝑘)2

𝑥𝑖∈𝐶𝑘
, is used in this paper. The linkage method 

determines how the distance between two clusters is defined. 
Common linkage methods include single linkage, complete 
linkage, and ward linkage. After comparing these methods 
during preliminary analysis, we decided to use the complete 
linkage in our final analysis for hierarchical clustering since it 
could best fit our dataset. The complete linkage refers to the 
longest distance between two observations in each cluster, and 
its equation is 𝐷12 = 𝑚𝑎𝑥𝑖𝑗(𝑋𝑖 , 𝑌𝑗) where 𝑋𝑖  𝑎𝑛𝑑 𝑌𝑗  are two 

observations. The distance between two clusters is the 
maximum distance between an observation in one cluster and 
an observation in the other cluster. 

c) A model-based clustering 

A model-based clustering assumes a data model and 
applies an expectation-maximization (EM) algorithm to find 
the most likely model components and the number of clusters. 
In the model-based clustering literature, the Gaussian Mixture 
Model (GMM) is most commonly used, such as [4][10]. GMM 
attempts to optimize the fit between the observed data and 
some mathematical model using a probabilistic approach. 
First, a specific-form mixture of Gaussians is assumed, and the 
density of the Gaussian mixture model [4] is: 

𝑓(𝑥|𝜃) = ∑ 𝜋𝑚𝜑(𝑥|𝜌𝑚, Σ𝑚)

𝑀

𝑚=1

 

where 𝜑(𝑥|𝜌𝑚, Σ𝑚) is the density of a multivariate Gaussian 
random variable 𝑋with mean 𝜌𝑚  and covariance matrix Σ𝑚 , 
and 𝜃 = (𝜋1, ⋯ , 𝜋𝑀 , 𝜌1, ⋯ , 𝜌𝑀 , Σ1, ⋯ , Σ𝑀). 

Second, the parameters (i.e., the mean and the standard 
deviation) of this model are estimated by the Expectation 
Maximization (EM) algorithm. EM starts with a random or 
heuristic initialization and then iteratively uses two steps to 
resolve the circularity in computation: (i) E-Step, which 
determines the expected probability of data assignment to 
clusters with the help of current model parameters. (2) M-Step, 
which determines the optimum model parameters of each 
mixture by using the assignment probabilities as weights [11].  

C. Evaluation Models of Driving Behavior Safety Levels 

In order to develop better evaluation models for driving 
behavior safety levels, support vector machines (SVM) and 
decision trees (DT) are used in this paper as well as the 
parameter fine-tune of developed models. SVM was originally 
designed based on statistical learning theory and structural risk 
minimization (e.g., [12][13]), and it will be used to classify 
driving behavior safety states. Among various types of SVM 
models, the C-support vector machine (C-SVM) was used in 
this study due to its most common use [13]. SVM models were 
developed in R® 3.5.3, using Package ‘e1071’ [15]. Given 
training vectors 𝒙𝑖 ∈ 𝑅𝑛, 𝑖 = 1, ⋯ , 𝑙 , in two classes and an 

indicator vector 𝒚 ∈ 𝑅𝑙  such that 𝑦𝑖 ∈ {1, −1}. C-SVM [13] 
solves the following primal optimization problem. 

𝑚𝑖𝑛
𝒘, 𝒃, 𝝃

      
1

2
𝑤𝑇𝒘 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1               (2) 

𝑠. 𝑡      𝑦𝑖(𝒘𝑇∅(𝒙𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ,                 
𝜉𝑖 ≥ 0, 𝑖 = 1, ⋯ , 𝑙                        

where ∅(𝒙𝑖)  maps 𝒙𝑖  into a higher-dimensional space and 

𝐶 > 0 is the regularization parameter. Due to the possible 

high dimensionality of the vector variable 𝒘, the following 

dual problem is solved [14]. 
𝑚𝑖𝑛

𝜶
      

1

2
𝜶𝑇𝑸𝜶 − 𝒆𝑇𝜶                      (3) 

𝑠. 𝑡     𝒚𝑇𝜶 = 0,                                    
0 ≤ 𝛼𝑖 ≤ C, 𝑖 = 1, ⋯ , 𝑙,                       

where 𝒆 = [1, ⋯ ,1]𝑇 is the vector of all ones, 𝑸 is an 𝑙 by 𝑙 
positive semi definite matrix, 𝑄𝑖𝑗 ≡ 𝑦𝑖𝑦𝑗𝐾(𝒙𝑖 , 𝒙𝑗) , and 

𝐾(𝒙𝑖 , 𝒙𝑗) ≡ ∅(𝒙𝑖)
𝑇∅(𝒙𝑗) is the kernel function. The optimal 

𝒘 satisfies 𝒘 = ∑ 𝑦𝑖𝛼𝑖∅(𝒙𝑖)
𝑙
𝑖=1  and the decision function is 

sgn(𝒘𝑇∅(𝒙) + 𝑏) = sgn(∑ 𝑦𝑖𝛼𝑖𝐾(𝒙𝑖 , 𝒙)

𝑙

𝑖=1

+ b) 



  

SVM models could also handle multi-classification 
problems. In this paper two kernel functions were considered: 

a) Radial Kernel: 𝐾(𝒙𝑖 , 𝒙𝑗) = exp (−𝛾|𝒙𝑖 − 𝒙𝑗|2) 

b) Linear Kernel: 𝐾(𝒙𝑖 , 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗 

A decision tree (DT) is a decision support algorithm that 
uses a tree-like model of decisions and their possible 
consequences to perform both classifications and regressions. 
The detailed knowledge of DT is introduced in previous 
papers, such as [16]. In this paper, the package ‘rpart’ [17] was 
used to develop the DT in R® 3.5.3. 

III. DATA AND EXPERIMENTAL DESIGN 

The driving simulator experiment was conducted in the 
Department of Transportation Planning and Engineering of the 
School of Civil Engineering of the National Technical 
University of Athens (NTUA), where the FOERST Driving 
Simulator FPF is located. The driving simulator consists of 3 
LCD wide screens 40’’(fullHD), a total angle view of 170 
degrees, a driving position, and a support base. 

The simulated road environment is an undivided two-lane 
rural road, which is a single carriageway with length 2,1 km,  

TABLE I.  VARIABLES FOR ANALYISIS 

N

o 
Variables  Description 

1 age Driver’s age 

2 LateralPosition Average distance to the right road board (m) 

3 StdevLateralPos 
Standard deviation of distance to the right 
road board (m) 

4 AverageSpeed Average speed (km/h) 

5 StdevSpeed Standard deviation of speed (km/h) 

6 RspurAverage 
Average track of the vehicle from the middle 
of the road (m) 

7 StdRspur 
Standard deviation of track of the vehicle 

from the middle of the road (m) 

8 RalphaAverage 
Average direction of the vehicle compared to 
the road direction in degrees 

9 StdRalpha 
Standard deviation of direction of the vehicle 

compared to the road direction in degrees 

10 BrakeAverage Average brake pedal position (%) 

11 StdBrake Standard deviation of brake pedal position(%) 

12 GearAverage Average chosen gear (0 = idle, 6 = reverse) 

13 StdGear 
Standard deviation of chosen gear (0 = idle, 6 

= reverse) 

14 RpmAverage Average motor revolutions in 1/min 

15 StdRpm 
Standard deviation of motor revolutions 

(1/min) 

16 HWayAverage 
Average headway, distance to the ahead 

driving vehicle (m) 

17 StdHWay 
Standard deviation of headway, distance to 

the ahead driving vehicle (m) 

18 DleftAverage Average distance to the left road board (m) 

19 StdDleft 
Standard deviation of distance to the left road 
board (m) 

20 WheelAverage Average steering wheel position in degrees 

21 StdWheel 
Standard deviation of steering wheel position 

in degrees 

22 TheadAverage 
Average time to headway, i.e. to collision 
with the ahead driving vehicle (s) 

23 StdThead 
Standard deviation of time to headway, i.e. to 

collision with the ahead driving vehicle (s) 

24 TTLAverage 
Average time to line crossing, time until the 
road border line is exceeded (s) 

25 StdTTL 
Standard deviation of time to line crossing, 

time until the road border line is exceeded (s) 

26 TTCAverage Average time to collision (all obstacles) (s) 

27 StdTTC Standard deviation of time to collision (s) 

28 Crash_number Number of crashes during the driving interval 

width 3m, with zero gradient, and mild horizontal curves. In 
the driving simulations, two traffic scenarios (i.e., moderate 
traffic conditions and high traffic conditions) and three 
distraction conditions (i.e., no distraction, cell-phone 
conversation and conversation with passenger) were examined 
in a full factorial within-subject design. During each trial of 
the experiment, two unexpected incidents that are the sudden 
appearance of an animal (deer or donkey) on the roadway were 
scheduled to occur at approximately fixed points along the 
drive. The driving simulator provides a “Free Driving” 
scenario that familiarizes the participants with the demands of 
an everyday drive. After a familiarization drive and a 
necessary short brake, each participant has only one chance to 
drive approximately 12,6km within about 20min in total. 
Finally, the sample of participants is a total of 260 individuals. 

The simulator records data at intervals of 33 to 50 
milliseconds, including at first, 33 variables in each session. In 
order to explore driving behavior safety level classification 
and estimation, 28 variables were further aggregated and 
collected, including the driving characteristics in normal 
driving scenario and the driving characteristics prior to the 
lowest speed during event scenarios. The variables are listed 
in TABLE I. It is noted that the crash could only happen at 
unexpected incidents. And 0.65 crashes as an average 
happened for each driver during the driving simulation. 

IV. RESULTS AND ANALYSIS 

A. Optimizing Driving Behavior Safety Levels 

K-means clustering, hierarchical clustering and a model-
based approach were used to identify the optimal levels of 
driving behavior safety. Fig. 2 illustrates the optimal number 
of clusters based on Elbow method. According to the location 
of the bend (knee) in the plot, the optimal number of driving 
behavior safety levels is four. 

 

Fig. 2   Optimal number of clusters based on k-means clustering. 

Fig. 3 shows the cluster dendrogram of hierarchical cluster 
analysis. The Ward's minimum variance method to perform 
agglomerative clustering. In the dendrogram, each leaf 
corresponds to one observation, and we can see the hierarchy 
of clusters. As we move up the tree, observations that are 
similar to each other are combined into branches. However, 
we can determine the number of clusters within the 
dendrogram and cut the dendrogram at a certain tree height to 
separate the data into different groups. The optimal number of 



  

state levels of driving behavior safety was found to be three. 
The red rectangle borders show the three clusters in Fig. 3 . 

As a parametric method that uses the Gaussian distribution,  

 
Fig. 3  Cluster dendrogram of hierarchical cluster analysis. 

the Gaussian mixture model (GMM) is a widely used model-
based approach. Bayesian Information Criterion (BIC) is an 
important index to find the number of clusters by selecting the 
best clustering model and it uses the likelihood and a penalty 
term to guard against overfitting. The bigger the BIC is, the 
better the number of clusters. Fig. 4 shows optimal number of 
clusters based on GMM. Therefore, the optimal number of 
driving behavior safety levels is four based on GMM, where 
the –BIC, which is 179507, is smallest. 

 
Fig. 4   Optimal number of clusters based on GMM. 

B. Clustering and Classification 

After defining the optimal driving behavior safety levels, 
the observations in the dataset were further clustered and 
classified into different clusters. K-means clustering, 
hierarchical clustering and a model-based approach were used 

for this purpose, as presented in Fig. 5 , Fig. 6 and Fig. 7 . 

 

Fig. 5  Different clustering scenarios based on k-means clustering. 

 

Fig. 6  Different clustering scenarios based on hierarchical clustering. 
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Fig. 7  Different clustering scenarios based on GMM. 

Three variables, namely average speed, average headway and 
average TTC, were selected as examples. It is interesting to 
note that the resulting sets of clusters based on these three 
clustering algorithms have similar geometries. 

T-SNE [5] was used to visualize the clustering algorithms. 
It is extremely useful for visualizing high-dimensional data 
[19], and it has a dimensionality reduction method to visualize 
data embedded in a lower number of dimensions, to see 
patterns and trends in the data. It can deal with more complex 
patterns of Gaussian clusters in multidimensional space 
compared to Principal Component Analysis. T-SNE results are 
shown in Fig. 8 , Fig. 9 and Fig. 10 . These visualizations show 
that driving behavior is well clustered into several levels. 

In order to identify the best clustering algorithm, four 
widely used indices, i.e., the within clusters sum of squares, 
the average silhouette width, Dunn index and Calinski-
Harabasz index, were used. The within clusters sum of squares 
is a measurement showing how closely related objects are in a 
cluster. The smaller the value, the more closely related objects 

 

Fig. 8   Visualization of clustering results based on k-means: elbow method. 

 

Fig. 9  Visualization of clustering results based on hierarchical clustering. 

 

Fig. 10   Visualization of clustering results based on GMM. 

are within the cluster. The average silhouette width is a 
measurement considering how closely related objects are 
within the cluster and how clusters are separated from each 
other. The silhouette value ranges from 0 to 1, and a value 
closer to 1 suggests that the data is better clustered [20]. The 
Dunn index [21] is an internal evaluation scheme, where the 
result is the ratio of minimum separation and maximum 
diameter for all clusters based on the clustered data itself. The 
higher the Dunn index value is, the better the clustering is. The 
Calinski-Harabasz index [22] also known as the Variance 
Ratio Criterion, is the ratio of the sum of between-clusters 
dispersion and of inter-cluster dispersion for all clusters. The 
higher the Calinski-Harabasz index is, the better the 
performance is. The results are listed in TABLE II.  

TABLE II.  COMPARING THREE CLUSTERING ALGORITHMS 

Index K-means Hierarchical cluster GMM 

The within clusters 
sum of squares 

6.2E8 11.3E8 11.6E8 

The average 

silhouette width 
0.341 0.176 -0.0239 

Calinski-Harabasz 
index 

843.4 310.2 182.9 

Dunn index 0.0266 0.0240 0.0071 

The indices show that the k-means algorithm is the best 
since its within clusters sum of squares is the smallest and its 
average silhouette width, the Calinski-Harabasz index and 
Dunn index are the biggest among the three. 

C. Driving Behavior Safety Level Evaluations 

After clustering the driving behavior safety levels, 
classification methods were used to evaluate the crash risk of 
driving behavior and further identify the safety levels. For this 
purpose, the widely used support vector machine (SVM) and 
decision trees were used.  

The original dataset with clustered labels was divided 
randomly with the help of the stratified sampling technique 
into training data and test data, with 1197 observations (i.e., 
70.0%) and 514 observations (i.e., 30.0%), respectively. The 
training data was applied to train SVM models and decision 
trees. Firstly, 80 SVM models, with different key parameters 
(the kernel function, the gamma and the cost), were developed 
to identify the best SVM model. Eight different gammas (i.e. 
0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10) and five different costs (i.e. 
0.01, 0.01, 1, 10, and 100) were considered for each of two 
kernel functions (i.e. radial and linear). Finally, the best model 
was identified for different clustering algorithms. TABLE III. 
lists the results of SVM models. The total accuracy of the three 
best SVM models are quite high (> 93.0%). It means that the 
developed SVM models can well identify the driving behavior 
safety levels in the data based on the three clustering methods. 

TABLE III.  RESULTS OF SVM MODELS 

Parameters K-means Hierarchical cluster GMM 

Kernel Linear Radial Linear 

Gamma 0.001 0.01 0.001 

Cost 10 10 100 

Number of Support 

Vectors 
110 165 107 

Best performance 0.0251 0.0485 0.0169 

Total Accuracy 97.3% 93.4% 98.7% 

 



  

The test data was further used to test the developed SVM 
models and decision trees. The results are listed in TABLE IV. 
, TABLE V. and TABLE VI. The total accuracy of SVM 
model in the k-means clustering scenario is (95+126+232+35) 
/ 514 = 94.9%, and the percentages of true predictions for each 
traffic safety levels are higher than 84.0%. Similarly, the total 
accuracy of SVM models in hierarchical clustering and GMM 
scenario are 95.5% and 97.9%, respectively, whereas the total 
accuracy of decision trees in k-means clustering scenario, 
hierarchical clustering and GMM scenario are 92.0%, 93.8% 
and 95.9%, respectively. Therefore, it can be found that the 
SVM models perform better than the decision trees. For each 
model, there are no significant differences between the 
accuracy from the training data and the test data in the three 
clustering algorithms. This indicates that the developed SVM 
model and decision trees are reasonable and well developed. 
Besides, the safety levels of driving behaviors are all well 
identified. Importantly, the total accuracy in GMM scenario is 
the highest among the three scenarios. By ignoring the 
performance difference between the developed models, we 
can conclude that the GMM can slightly improve the 
clustering performance of the safety level of driving behaviors. 
This can also reflect that the optimal safety level / cluster is 
four. 

TABLE IV.  THE EVALUATED LEVELS OF SVM AND DECISION TREE IN 

K-MEANS CLUSTERING SCENARIO 

Model Clustered 
Predicted 

1 2 3 4 True False 

SVM 

1 95 7 2 8 84.8% 15.2% 

2 1 126 3 0 96.9% 3.1% 

3 0 2 232 0 99.1% 0.9% 

4 0 0 3 35 92.1% 7.9% 

Total     94.9% 5.1% 

Decision 

 tree 

1 43 0 0 0 100.0% 0.0% 

2 15 106 0 15 77.9% 22.1% 

3 8 0 84 3 88.4% 11.6% 

4 0 0 0 238 100.0% 0.0% 

Total     92.0% 8.0% 

TABLE V.  THE EVALUATED LEVELS OF SVM AND DECISION TREE IN 

HIERARCHICAL CLUSTERING SCENARIO 

Model Clustered 
Predicted 

1 2 3 True False 

SVM 

1 374 14 0 96.4% 3.6% 

2 8 114 1 92.7% 7.3% 

3 0 0 3 100.0% 0.0% 

Total    95.5% 4.5% 

Decision 

 tree 

1 371 11 0 97.1% 2.9% 

2 20 107 1 83.6% 16.4% 

3 0 0 4 100.0% 0.0% 

Total    93.8% 6.2% 

TABLE VI.  THE EVALUATED LEVELS OF SVM AND DECISION TREE 

GMM SCENARIO 

Model Clustered 
Predicted 

1 2 3 4 True False 

SVM 

1 252 0 0 0 100.0% 0.0% 

2 2 117 0 0 98.3% 1.7% 

3 1 0 24 3 85.7% 14.3% 

4 1 0 4 110 95.7% 4.3% 

Total     97.9% 2.1% 

Decision 

 tree 

1 240 2 0 2 98.4% 1.6% 

2 0 120 0 0 100.0% 0.0% 

3 0 0 24 3 88.9% 11.1% 

4 0 0 14 108 88.5% 11.5% 

Total     95.9% 4.1% 

V. CONCLUSION 

The findings of this paper proved that driving safety could 
be clustered into several levels: ideally four. They can be 
labelled as “normal” driving, “low risk” driving, “middle risk” 
driving and “high risk” driving. Among k-means clustering, 
hierarchical clustering, and a model-based clustering (i.e., 
GMM), k-means clustering gave the optimal number of 
clusters. The combination of developed SVMs and GMM 
outperformed the other combined algorithms; yet, the 
difference was not significant. This further supports the 
hypothesis that the driving data is well clustered in various 
levels, and that models could be developed for safety level 
classifications. Additionally, it is also found in this paper that 
the SVM models perform better than the decision trees. Still, 
this research does not come without limitations. The dataset 
did not include existing variables on drivers’ demographics 
and attitudes and perceptions. Future work should also focus 
on identifying the factors (variables) of importance associated 
with one or the other driving levels and their relationships. 
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