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Abstract 
 

The i-DREAMS project aims at defining, developing, testing and validating a "Safety Tolerance Zone" (STZ) in 

order to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risk in both 

real-time and post-trip. Τhe aim of the current study is to provide guidelines for mapping the concept of the STZ 

using continuous variables of risk and the most reliable indicators (e.g. time headway, speed, harsh acceleration, 
distraction) are going to be investigated in real-time. For the purpose of the analysis, a variety of analytical methods 

and potential modelling approaches are proposed. According to the research question made, a mapping exercise 

of machine learning algorithms (e.g. Long Short-Term Memory or Dynamic Bayesian Networks) is implemented 

for real-time data prediction. The key output will be the correlation of the aforementioned explanatory variables 

and various indicators of task complexity and coping capacity with the dependent variable risk.  

 
Keywords: i-DREAMS project, safety tolerance zone, mapping methodology, continuous risk indicators, real-time 

prediction. 

 

Περίληψη 
 

Το έργο i-DREAMS στοχεύει στον ορισμό, την ανάπτυξη, τη δοκιμή και την επικύρωση του "εύρους ανοχής 

ασφαλείας" (STZ), ώστε να αποφευχθεί η υπερβολική απόκλιση των οδηγών από τα όρια της ασφαλούς 

λειτουργίας, μειώνοντας τον κίνδυνο τόσο σε πραγματικό χρόνο όσο και μετά το ταξίδι . Στόχος της παρούσας 

μελέτης είναι να παρέχει οδηγίες για τη χαρτογράφηση της έννοιας της STZ χρησιμοποιώντας συνεχείς 

μεταβλητές κινδύνου και οι πιο αξιόπιστοι δείκτες (π.χ. απόσταση προπορευόμενου οχήματος, ταχύτητα, απότομη 

επιτάχυνση, απόσπαση προσοχής) θα διερευνηθούν σε πραγματικό χρόνο. Για τον σκοπό αυτό, προτείνονται 

αρκετές μέθοδοι ανάλυσης και προσεγγίσεις μοντελοποίησης. Σύμφωνα με τις ερευνητικές ερωτήσεις που 

πραγματοποιήθηκαν, διάφοροι αλγόριθμοι μηχανικής μάθησης (π.χ. Long Short-Term Memory ή Dynamic 

Bayesian Networks) εφαρμόζονται για την πρόβλεψη δεδομένων σε πραγματικό χρόνο. Το βασικό αποτέλεσμα 
θα είναι η συσχέτιση των προαναφερόμενων επεξηγηματικών μεταβλητών και των δεικτών πολυπλοκότητας που 

σχετίζονται με την οδήγηση με τον εξαρτώμενο κίνδυνο. 

 
Λέξεις κλειδιά: Έργο i-DREAMS, εύρος ανοχής ασφαλείας, μεθοδολογία χαρτογράφησης, δείκτες κινδύνου, 

πρόβλεψη σε πραγματικό χρόνο. 
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1. Introduction 

 

The overall objective of the European H2020 i-DREAMS1 project is to define, develop, test 

and validate a context-aware safety envelope for driving in a ‘Safety Tolerance Zone’ (STZ), 

with a smart Driver, Vehicle & Environment Assessment and Monitoring System. Taking into 

account, on the one hand, driver background factors and real-time risk indicators, and on the 

other hand, driving task complexity indicators, a continuous real-time assessment will be 

created to monitor and determine if a driver is within acceptable boundaries of safe operation 

(i.e. Safety Tolerance Zone). Testing and validation will be applied to car, bus and truck drivers 

as well as to tram and train drivers. 

 

Within a transport system, a driver can be regarded as a human operator (technology assisted) 

self-regulating control over transportation vehicles in the context of crash avoidance. The 

concept of the STZ within the i-DREAMS platform attempts to describe short of the range at 

which self-regulated control is considered safe. It is based on Fuller’s Task Capability Interface 

Model (Ray Fuller, 2000, 2005, 2011) which states that loss of control occurs when the demand 

of a driving task outweighs the operator’s capability.  

 

The STZ contains three phases: normal driving phase, danger phase and avoidable accident 

phase. Firstly, the normal driving refers to the phase where conditions at that point in time 

suggest that a crash is unlikely to occur and therefore the crash risk is low and the operator is 

successfully adjusting their behavior to meet task demands. Fundamental goal of the i-

DREAMS platform is to keep drivers within this normal phase. Secondly, the danger phase is 

characterized by changes to the normal driving that suggest a cash may occur and therefore, 

there is an increased crash risk. At this stage a crash is not inevitable but becomes more likely. 

The STZ switches to the danger phase whenever instantaneous measurements detect changes 

that imply an increased crash risk. Lastly, the switch to avoidable accident phase occurs when 

a collision scenario is developing but there is still time for the operator to intervene in order to 

avoid the crash. In this phase, the need for action is more urgent as if there are no changes or 

corrections in the road or rail traffic system or an evasive manoeuvre is performed by the 

operator a crash is very likely to occur. 

 

It should be mentioned that the i-DREAMS platform is composed of two modules. The first is 

the monitoring module that takes measurements relating to the "context" (i.e. environment 

including infrastructure), "operator" (i.e. driver state and demographic characteristics) and 

"vehicle" (i.e. technical specifications and current state). These "Context - Operator - Vehicle - 

COV" measurements are used to infer the demands of the driving task (i.e. task complexity) 

and the driver's capability to cope with these demands (i.e. coping capacity). These inferences 

on its turn are used to estimate in which phase within the STZ the driver is operating within at 

each moment in time. The second module is the in-vehicle intervention module, that is 

responsible for keeping the driver within the normal phase of the STZ all the times, either by 

providing a warning or instruction during driving (real-time intervention) or providing 

 
1Further general project information can be found on the website: https://idreamsproject.eu 
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information with detailed feedback on the trip as well as improving their performance once the 

driving task has ended (post-trip intervention). The STZ phase, within which the driver is 

operating, dictates the type of real-time intervention that is delivered. In the normal driving 

phase, no intervention is needed. If it is detected that a driver has entered the danger phase, a 

warning or advice should be given. Entering the avoidable accident phase also requires an 

intervention, but this may need to be more specific and provide an instruction signal, which 

impels the operator to take a decisive action. 

 

The conceptual state of the STZ changes dynamically depending upon changes in the driving 

conditions or system of which the operator is an integral part. The drivers’ self-regulated control 

has many influences, one of which is the driver’s own perception of the driving conditions. 

Drivers seek to maintain a level of risk that they are comfortable with and continuously adapt 

their behavior to achieve the subject to a complex network of underlying motivations, not all 

of which relate to safety. This implies that drivers may choose to intentionally behave in a way 

that objectively would be considered unsafe (i.e. travelling close to a vehicle ahead). A driver’s 

subjective appraisal of risk does not necessarily therefore correspond to that calculated with 

objective measures, nevertheless the driver would still be classed as operating within the danger 

or avoidable accident phases of the STZ (Ray Fuller, 2011).  

 

It is worth mentioning that data analysis consists a pivotal part of this project for achieving its 

objectives and the methods for data analysis highly depend on the collected data. In order to 

model the STZ, the available data as well as the potential outcome of the model need to be 

considered. For suggesting a positive outcome, the data to be used as input for the model will 

be available in real-time, as the measurements of task demand (e.g. road layout, weather 

conditions, time of the day) and coping capacity (e.g. fatigue, distraction, sleepiness) are going 

to be sequential. Furthermore, as the STZ is the “trigger” for real-time and post-trip 

interventions, the algorithm outputs are required also to be provided online as in real-time and 

hence both dynamic and static modelling approaches need to be considered. Distinguishing 

between the three levels of STZ (i.e. normal driving, danger and avoidable accident phases) in 

real-time, turns STZ modelling into a ternary classification problem, where raw measurements 

need to be classified as belonging to one of the three existing levels. This classification problem 

however implies that the feed to the training part of these algorithms needs to be conveniently 

labelled.  

 

Within, the above framework, the aim of the current study is to provide guidelines for mapping 

the concept of the STZ using continuous outcome variables. The overall objective is to further 

elaborate on the analytical methods and modelling options, their strengths, limitations and 

applications in i-DREAMS. Particular focus will be given in continuous variables of risk and 

the most reliable indicators are going to be investigated in real-time. For instance, time 

headway, speed, acceleration, deceleration, distraction, fatigue or sleepiness consist some of 

the continuous variables in order to model the concept of the i-DREAMS project.  

 

The paper is structured as follows. In the beginning, the overall objective of the i-DREAMS 

project as well as the aim of this research is provided. Subsequently, a thorough literature 

review of models dealing with driver behavior and collision risk modelling in real-time are 

provided. Then, the most prominent approaches are detailed analyzed and a brief description of 
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their underpinning procedure is given. Additionally, initial insights into analyses and results for 

real-time purposes are presented. Lastly, overall conclusions as well as practical considerations 

concerning the modelling of the STZ are highlighted in order to assist researchers and 

practitioners. 

 

2. Background 

 

Predicting driving behavior by employing mathematical driver models, obtained directly from 

the observed driving-behavior data, has gained much attention in literature (Girma et al., 2019; 

Kanaan et al., 2019; McDonald et al., 2019; Xue et al., 2019; Zou et al., 2018). Several models 

have been used to address road safety and the estimation of driving behavior, many of which in 

the context of experimental studies, including driving simulator studies and field operational 

trials and/or naturalistic driving studies. The aim of this section is to examine different models 

as well as methodologies that include the relationship and interaction between task demand and 

coping capacity. both static and dynamic state-of-the-art approaches that could be employed to 

convert driving behavior data into meaningful STZ information are reviewed. The most suitable 

models, able to estimate driving behavior and crash risk will be employed for the scope of the 

i-DREAMS project. Literature was searched within popular scientific databases such as 

Scopus, ScienceDirect and Google Scholar. All studies were screened on the basis of their title 

and abstract in order to select the studies presented in the following review. 

 

2.1 Bayesian Networks 

 

In recent years, BNs have been quite popular in modelling massive amounts of data with the 

need for data aggregation and model flexibility (Li et al., 2014; Tandon et al., 2016). Lefèvre 

et al. (2012) proposed a DBN which focused on intersection accidents caused by driver errors. 

Their approach was formulated as an inference problem where intention and expectation were 

estimated jointly for the vehicles converging to the same intersection and the proposed solution 

was validated by field experiments using passenger vehicles. The results demonstrated the 

ability of the algorithm to issue a warning in dangerous situations, and the benefits of taking 

into account interactions between the vehicles when reasoning about situations and risk at road 

intersections. The use of the Bayesian formalism allowed to take into account uncertainties on 

the relationships between the variables. The intuitive formulation of risk provided the required 

flexibility for safety applications relevant to both ADAS and autonomous driving. However, 

information about drivers’ actions, such as steering angle and pedal pressure were not taken 

into account.  

 

In addition, Zhu et al. (2017) utilized a hierarchical BN model to investigate the relationship 

between observed vehicle motion and a driver's historical crash involvements through the 

hidden layers of driving behavior and crash risk. The results suggested that the contextual model 

performs significantly better than the non-contextual model. The method was also effective in 

handling massive trajectory data and flexible in the data aggregation process. However, the 

contextual indicators have been more comprehensive by including more variables beyond 

current roadway type, traffic and relative speeds. 
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Katrakazas et al. (2019) developed a new risk assessment methodology that integrates a 

collision risk network-level (CRN) with collision risk vehicle-level (CRV) estimates in real-

time under the joint framework of interaction-aware motion models and DBN. Results indicated 

an enhancement of the interaction-aware model by up to 10%, when traffic conditions were 

deemed as collision-prone. The network-level collision information could assist not only the 

identification of “dangerous” road users but also act as a safety net for all the motion planning 

levels and is suitable for Connected and Autonomous Vehicles (CAVs). It is however 

noteworthy that the extracted probabilities for all the scenarios were not sufficiently high and 

the scenarios were built on some assumptions and without highly detailed vehicle-level data.  

 

The work by Shankar et al. (2008) pointed out that hierarchical DBN can be used to reflect how 

driver decisions are made: driver-level predictors, such as years of driving, can be used to 

parameterize the effects of event attributes and context. There were found some advantages 

related to parameter uncertainty, sample specificity and extensibility to large data sets, which 

can capture driver differences over time and space, but non automated storage of data through 

the DAS with a flag for potential risk was identified. 

 

2.2 Clustering Models 

 

Clustering techniques have been used by researchers to categorize drivers who are compliant 

and non-compliant. Xue et al. (2019) developed a driving style recognition method (safe, low-

risk, high-risk, dangerous) based on vehicle trajectories from video recordings and k-means 

clustering, failing however to take into account road conditions and traffic flow levels. An 

individually-tailored, real-time feedback-reward system for in-vehicle interventions was 

installed in driver’s own vehicles and its effect was researched in a field trial with 37 

participants by Merrikhpour et al. (2014). Drivers were clustered by compliance rate, pre and 

post interventions, in more speed and headway compliant and less speed and headway 

compliant and the results showed that speed limit and headway compliance increased with post-

intervention in the non-compliant group. However, it is not clear if the observed benefits were 

due to either feedback, or reward, or the unique combination of both. The study by Wang and 

Xu (2019) using SHRP2 data followed a two-level approach; first, a K-means algorithm was 

adopted to classify drivers into groups of high, moderate or low risk level and second, logistic 

regression models for each risk group indicated the probability of each driver getting involved 

in an incident. Drivers themselves participated in this study by validating any traffic event using 

an in-vehicle event button and by self-assessing their behavior due to inattention and 

inexperience errors. 

 

2.3 Fuzzy Logic Models 

 

Machine learning techniques have been used in primarily traffic flow modelling and second in 

road safety analysis. Imkamon et al. (2008) proposed a new Fuzzy Logic inference system 

which can record driving events, detect unsafe or risk driving behavior and classify levels of 

hazardous driving by employing data from sensors that measure three different perspectives (an 

ECU reader, an accelerometer, and a camera). The test results showed that the system can 
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perform well compared with human opinions. However, the current system had a limitation of 

day-time operation due to constraints. In addition, Chong et al. (2013) trained a fuzzy rule-

based neural network to model the acceleration of a car-following vehicle. Fuzzy logic was 

used to discretize traffic state and action variables and reinforcement learning was used for the 

neural network to learn driving behavior from naturalistic data. On the one hand this paper 

showcased the application of fuzzy rules on continuous variables with high R-squared values, 

but on the other hand the choice of model parameters and the number of car-following events 

were limited (ten in total). Fuzzy deep learning was also applied for traffic incident detection 

(El Hatri and Boumhidi, 2018), where the authors performed a comparison of machine learning 

models based on MSE with detection rate and mean time to detection as criteria. Their 

implementations showcased a high detection rate, low false alarm rate and a back-propagation 

feature to adjust the parameters in the deep network, although model validation was done on 

highly artificial street network and incident occurrences. The standard deviation of detection 

time was not given, indicating questionable potential for applying this algorithm. 

 

2.4 Hybrid Input Output Automaton 

 

According to Bouhoute et al. (2014), a Hybrid Input Output Automaton (HIOA) is a formal 

model that used to describe discrete and continuous behavior of a system. A driver-centric 

approach to model risky driving behavior in vehicular ad hoc networks was proposed. Their 

advantage consisted of providing a better analysis of hybrid systems. The constructed 

automaton corresponded to the supposed behavior of the driver in one trip, exploration of other 

states possible in next trips. The goal of the proposed example was to illustrate the idea of the 

modelling approach and how it can be applied. Consequently, despite the constructed model 

may be useful to predict the driver behavior in the future, prevent unsafe situations and provide 

more comfort to the driver, the implementation of the model and the learning process have been 

not implemented yet.  

 

2.5 Long Short-Term Memory Models 

 

Girma et al. (2019) proposed deep learning-based models, called LSTM models, to predict and 

identify drivers based on their individual’s unique driving patterns based on vehicle telematics 

data. Results showed that the proposed model prediction accuracy remained satisfactory and 

outperformed other approaches despite the extent of anomalies induced in the data. Even under 

increasing noise and outliers’ effect, the proposed approach maintained its accuracy above the 

acceptable value, 88%, while other models’ accuracy fell below 40%. Neural network-based 

models such as LSTM performed better than Fully Connected Neural Network (FCNN), 

Decision Tree (DT) or RF, by avoiding over-fitting on the noise. Bao et al. (2019) trained a 

spatiotemporal convolutional LSTM network to determine a crash risk scale and to calibrate a 

crash risk alarm threshold. Their data comprised large-scale taxi GPS data, population data, 

weather and land use features, and they were used to compare econometric and machine 

learning models. Econometric models performed better than machine-learning models in 

weekly crash risk prediction tasks, while they exhibit worse results than machine-learning 
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models in daily crash risk prediction tasks. However, because taxi trips were not representative 

of the general mobility patterns in a city, this study entails a significant sample bias problem. 

 

2.6 Recommendation 

 

With regards to safety and risk level, several models and methodologies have been examined. 

From the aforementioned approaches examined, DBNs were found to be the most effective and 

extensible in handling massive trajectory data, as well as flexible for safety applications in the 

data aggregation process (Lefèvre et al., 2012; Shankar et al., 2008; Zhu et al., 2017). The use 

of the Bayesian formalism allowed to take into account uncertainties on the relationships 

between the variables (Lefèvre et al., 2012). However, variable selection, assumptions and non-

highly detailed vehicle-level data were found to be some of the shortcomings of this approach 

(Katrakazas et al., 2019). Lastly, LSTMs revealed the highest accuracy, compared with other 

models examined. Specifically, the proposed model maintained its accuracy above the 

acceptable value 88%, while other models’ accuracy fell below 40%. LSTM had an inherent 

ability to remember temporal information in data and conserve it for many time steps, unlike 

other conventional machine learning approaches (Girma et al., 2019). 

 

3. Methodological Overview 

 

According to the research question and hypothesis made, a mapping exercise of machine 

learning algorithms was implemented for real-time data prediction. It should be noted that the 

fundamental research question within the i-DREAMS project is how explanatory variables (i.e. 

various indicators of task complexity and coping capacity) are correlated with the dependent 

variable “risk”.  

 

A variety of analytical methods and potential modelling approaches has been reviewed, among 

which two methods have been selected to be used in i-DREAMS: Dynamic Bayesian Networks 

(DBN) and Long Short-Term Memory (LSTM) deep neural networks. Each of these two 

methods has strengths and limitations, making it suitable for a certain purpose in the project. 

Based on the methodological background, an attempt was made to transform the model 

approach into a suitable structure which will allow to response to the research question made. 

The key output is expected to be the correlation of the explanatory variables and various 

indicators of task complexity and coping capacity with the dependent variable risk. 

 

3.1 Dynamic Bayesian Network analytical approach 

 

It is hypothesized that a situation is risky if the level of task complexity is different from the 

level of coping capacity. For example, if the driving is task is difficult and the operator state is 

decreased, then risk is probable. In order to identify risk, the level of task complexity as well 

as the level of coping capacity need to be predicted and compared. As a result, the hypothesis 

forms a real-time multi-level classification problem, where the dependent variable takes the 

form of a category representing the difference of task complexity and coping capacity. Task 
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Complexity variables (X1) and coping capacity variables (X2) can be used to identify individual 

levels of coping capacity and task complexity, and can also be supplemented by other indicators 

to predict Y. The relationship between the variables and their causal relationship can be depicted 

in the following flowchart in Figure 1: 

 

 
 

Figure 1: The causal relationship between the variables of task complexity and coping capacity 

 

With regards to the model specification, the raw sensor measurements will be observed. By 

filtering these raw measurements, the COV indicators will become available, so they will be 

used to determine the coping capacity and task complexity at each time moment. Hence, the 

two layers of coping capacity and task complexity depend on the COV indicators. Finally, as 

the operator’s capacity indicates the ability of the driver to operate safely with regards to the 

task imposed, the operator’s capacity depends on the complexity of the task. The proposed 

DBN structure along with the proposed characteristics to estimate task complexity and coping 

capacity is depicted in Figure 2. 
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Figure 2: The proposed DBN for STZ modelling 

 

The proposed DBN can be described by the joint distribution: 

 

  𝑃(𝑇𝐶0:𝑇 , 𝐶𝐶0:𝑇 , 𝐹𝑀0:𝑇 , 𝑍0:𝑇) = 𝑃(𝑇𝐶0, 𝐶𝐶0, 𝐹𝑀0, 𝑍0) 

∏ 𝑃(𝑇𝐶𝑡|𝑇𝐶𝑡−1𝐹𝑀𝑡−1) 𝑃(𝐶𝐶𝑡|𝑇𝐶𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1) 𝑃(𝐹𝑀𝑡|𝐹𝑀𝑡−1𝑇𝐶𝑡𝐶𝐶𝑡𝐶𝐶𝑡−1)𝑃(𝑍𝑡|𝐹𝑀𝑡) 
  

𝑇

𝑡=1

 

𝑡 ∈  ℕ 𝑎𝑛𝑑 𝑡 ≤ 𝑇         (1) 

 

where: 

• TC: Task Complexity 

• CC: Coping Capacity 

• FM: Filtered COV Measurements 

• Z: Raw measurements 

• t: current time step 

• T: Total time of measurements 

 

The expected task complexity 𝑃(𝑇𝐶𝑡|𝑇𝐶𝑡−1𝐹𝑀𝑡−1)  is derived from the previous task 

complexity and the available indicators on environment variables (i.e. time of day, wipers 

on/off, low visibility indicator, road environment, road geometric configuration and traffic 

density). 

 

𝑃(𝑇𝐶𝑡|𝑇𝐶𝑡−1𝐹𝑀𝑡−1) = 𝑓(𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑇𝐶𝑡−1) (2) 
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Coping capacity 𝑃(𝐶𝐶𝑡|𝑇𝐶𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1) can be estimated through functions that correlate the 

effect of task complexity on coping capacity (Faure et al., 2016) modified by a factor to take 

the previous coping capacity into account. 

 

𝑃(𝐶𝐶𝑡|𝑇𝐶𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1)= 𝑓(𝐷𝑟𝑖𝑣𝑒𝑟, 𝑇𝐶𝑡, 𝐶𝐶𝑡−1)  (3) 

 

The filtered measurements 𝑃(𝐹𝑀𝑡|𝐹𝑀𝑡−1𝑇𝐶𝑡𝐶𝐶𝑡𝐶𝐶𝑡−1)  is the probability of the indicator 

values based on the current task complexity and coping capacity as well as their previous values 

and the previous coping capacity can be mapped based on the specific scenarios that will be 

tested in the simulators. In that way, specific ranges of values or task complexity - and coping 

capacity-specific measurements along with their corresponding probabilities of appearance can 

be identified. 

 

For the probability of the raw measurements 𝑃(𝑍𝑡|𝐹𝑀𝑡) a sensor model based on Agamennoni 

et al. (2011) and the Student t-distribution can be followed. In order to identify the different 

STZ levels, a comparison between the layers of task complexity and coping capacity will be 

made. The following probability is proposed to be inferred in order to identify avoidable 

accident or dangerous STZ levels. It should be mentioned that this probability refers to 

situations that task complexity and coping capacity are beyond normal operations (i.e. increased 

or high task complexity with decreased or low coping capacity) given the available sensor 

observations. 

 

P(TC ≠normal ∪ CC ≠normal |Sensors)     (4) 

 

Examples of the different STZ levels according to task complexity and coping capacity are 

highlighted in Table 1. It can be observed that low coping capacity leads to avoidable accident 

or dangerous phase, decreased coping capacity leads to dangerous or normal phase, while high 

coping capacity leads to Normal phase, regardless the other layers of task complexity. 

 

Table 1: Different STZ levels according to task complexity and coping capacity 

 

Task Complexity Coping Capacity STZ Level 

High Low Avoidable Accident  

High  Decreased  Dangerous  

High  High  Normal  

Increased  Low Avoidable Accident  

Increased  Decreased  Dangerous 

Increased  High  Normal 

Low  Low Dangerous 

Low  Decreased  Normal 

Low  High  Normal  

 

The likelihood function for Bayesian Networks is the same as in the frequentist inference. More 

specifically, 
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𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑖 = 𝜋(𝑥𝑖)𝑦𝑖(1 − 𝜋(𝑥𝑖))(1− 𝑦𝑖)      (5) 

 

where: 

• 𝑥𝑖 is the covariate vector 

• π(𝑥𝑖) is the probability of the event for the 𝑖th subject which has covariate vector 𝑥𝑖 
• 𝑦𝑖 is the multiple dependent variable representing the risk probability which has the outcomes 

y=0 (STZ: Normal Phase), y=1 (STZ: Dangerous Phase) and y=2 (STZ: Avoidable Accident 

Phase) 

The logistic regression equation is: 

 

log (
𝑝

1−𝑝
) = 𝛽0 +  𝛽1𝑥1  +  ⋯ +  𝛽𝑛𝑥𝑛           (6) 

 

where: 

• 𝛽0 is the intercept 

• 𝛽𝑖 is a coefficient for the explanatory variable 𝑥𝑖 

In addition, similarly to the frequentist approach, taking the exp(β) provides the odds ratio for 

one unit change of that parameter.  

 

3.2 Long Short-Term Memory analytical approach 

 

With regards to the modelling approach, it is assumed that there is a specific risk factor (i.e. 

task complexity or coping capacity) along with the corresponding measurements and metrics 

for each variable. At each time, a specific risk factor (i.e. STZ levels of each risk factor are 

known) is targeted but other important variables (e.g. weather conditions, distraction, etc.) can 

also be used in the same model in order to make the prediction. The entire dataset will be split 

into train and test set. Based on these indicators, there is a need to predict the risk, and therefore, 

the time spent in each STZ level (i.e. normal, dangerous, avoidable accident). The problem is a 

real-time regression problem and can be solved by the LSTM formulation. In order to make 

sure that the risk calculated is reliable, a good level of forecast accuracy for all the STZ levels 

should be performed. For instance, if a good prediction for the “avoidable accident” phase can 

be produced, it should be made clear that a good prediction for the “normal” phase, can be 

produced as well. This implies that the level of the STZ should be known beforehand, otherwise 

this hypothesis needs to be supplemented by a classification problem or a clustering one. The 

flowchart associated with this hypothesis is shown in Figure 3. 

 



 
 

- 12 - 

 
 

Figure 3: The proposed LSTM for STZ modelling 

 

With regards to the second proposed LSTM model, the problem of defining the STZ levels 

becomes more straightforward, since LSTMs as a sub-category of Deep Neural Networks act 

like “black-boxes” (Xu et al., 2013) and thus the only input that needs to be provided to the 

model are labelled time series data. The proposed approach using LSTMs is given in Figure 4. 

 

In the proposed solution with LSTMs, historical sensor data will be used to extract and select 

features of the measurements to obtain the most important for STZ level detection. Afterwards, 

the most important measurements for monitoring the environment the vehicle and the driver 

become the input to an unsupervised learning algorithm that will group together measurements 

according to task demand and coping capacity, which, in turn, will act as input for training the 

LSTM model. After training the LSTM model with the labelled time-series data, the available 

real-time sensor data will be used as input for the model to predict the STZ level in the 

subsequent time.  
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Figure 4: STZ modelling using LSTMs 

 

4. Results 

 

In order to model the concept of the i-DREAMS project several parameters were examined. 

Particular emphasis was given to average speed and a new variable was created taking into 

account the different levels of STZ. Thus, the dependent variable was the STZ_speed which 

was divided into three levels (i.e. normal phase:0, dangerous phase: 1, avoidable accident phase: 

2). Then, the correlation of the independent variables (i.e. TTC – time to collision with vehicle 

ahead, Headway - time headway to vehicle ahead in same lane, Distance travelled - distance 

driving, HandsOnEvent - whether hands are on the steering wheel, FatigueEvent - KSS score, 

ME_ForwardCollisionWarning - whether forward collision warning is active and 

ME_LaneDepartureWarningActive - whether lane departure warning is active) was 

investigated. No strong correlation among these indicators was identified, as shown in Table 2. 
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Table 2: Correlation of independent variables 

 

 Headway TTC Distance.travelled HandsOnEvent FatigueEvent 
ME_ForwardCollision

Warning 
ME_LaneDeparture

WarningActive 

Headway 1,000 0,000 -0,081 -0,098 -0,124 -0,005 -0,024 

TTC 0,000 1,000 0,000 -0,010 -0,078 0,001 -0,007 

Distance.travelled -0,081 0,000 1,000 0,024 0,097 0,004 0,000 

HandsOnEvent -0,098 -0,010 0,024 1,000    

FatigueEvent -0,124 -0,078 0,097  1,000   

ME_ForwardCollision

Warning 
-0,005 0,001 0,004   1,000 -0,008 

ME_LaneDeparture 

WarningActive 
-0,024 -0,007 0,000   -0,008 1,000 

 

A feature importance algorithm extracted from XGBoost was used in order to evaluate the 

significance of variables on forecasting STZ and select the most appropriate independent 

variables. Headway, distance travelled and TTC were the most important factors of all 

examined indicators, while the parameters of forward collision warning and lane departure 

warning active were less significant. Table 3 provides the feature importance of independent 

variables based on XGBoost algorithm implemented. 

 

Table 3: Feature importance of independent variables 

 

  Variables Importance 

1 Headway 0.4628857977881 

2 Distance.travelled 0.3689770387145 

3 TTC 0.1681097785940 

4 ME_ForwardCollisionWarning 0.0000203474815 

5 ME_LaneDepartureWarningActive 0.0000004199277 

 

A short dataset of 10,000 rows was used and a Neural Network model was implemented. As 

presented in Figure 5, in this study, there are three neurons in the input layer (i.e. headway, 

distance.travelled, TTC) and one neuron in the output layer (STZ). 
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Figure 5: The multi-layer Neural Network model layout for STZ 

 

Then, a table of confusion which contains two rows and two columns that reports the number 

of false positives, false negatives, true positives, and true negatives was created. This allows 

more detailed analysis than mere proportion of correct classifications (e.g. accuracy). In 

particular, negative class refers to the Normal phase, positive class refers to the Dangerous 

phase, while no instances for Avoidable Accident Phase were detected, as shown in Table 4. 

 

Table 4: Confusion data matrix 

 

 Predicted Class 

Actual (True) Class 0 1 

0 
True Negative (TN) 

157 

False Positive (FP) 

797 

1 
False Negative (FN) 

0 

True Positive (TP) 

1546 

 

With regards to the assessment of classification model, average classification accuracy 

represents the proportion of correctly classified observations, while precision, recall and 

specificity, which are three major performance metrics, describe a predictive classification 

model. F1-score is calculated in order to find a balance between precision and recall. The 

geometric mean G-mean is a product of the prediction accuracies for both classes, i.e recall: 

accuracy on the positive examples, and specificity: accuracy on the negative examples. Lastly, 

the false positive rate refers to the expectancy of the false positive ratio (i.e. the probability of 

falsely rejecting the null hypothesis for a particular test). Table 5 provides the assessment of 

classification model.  
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Table 5: Assessment of classification model 

 

Accuracy Precision  Recall Specificity f1-score G-Means FP Rate 

0,68 0,66 1 0,16 0,80 0,81 0,84 

 

5. Conclusions 

 

Following a thorough literature review of models dealing with driver behavior and collision 

risk modelling in real-time, the most prominent approaches were found to be Dynamic Bayesian 

Networks or DBNs (a probabilistic graphical time-series model) and Long Short-Term Memory 

networks or LSTMs (a deep neural network formulation). These two dynamic approaches were 

chosen due to their efficiency and flexibility in real-time predictions and were found to be 

suitable for prediction of continuous indicators of risk (e.g. fatigue, speed, time headway, 

distraction, harsh acceleration). Such a continuous indicator of risk may be the result of 

combining discrete indicators of risk for different risk factors (which will help validate STZ) 

or may be the time that is spent in each phase of STZ (which will help tuning the 

frequency/pitch/presentation of warnings).  

 

While the review of the analytical methods presented previously provided a good understanding 

of the potential modelling candidates in i-DREAMS and the final selected methods seem 

plausible, there are still some open issues that need to be considered for model selection. For 

example, the suggested methods may be confronted with additional limitations considering the 

ongoing discussions on the different types of data being collected in i-DREAMS. In addition, 

a number of new limitations have been identified with additional deeper investigations into 

these methods. For example, it is noted that LSTM is not able to incorporate the inter-

relationship between variables into real-time predictions. 

 

Preliminary results indicated a strong relationship between STZ and the independents variables 

of headway, distance.travelled and TTC. However, it should be highlighted that when more 

data are available, the most crucial risk indicators of task demand and coping capacity will be 

extracted and the initial hypothesis described in the paper will be confirmed. 
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