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Abstract 
 

Road safety impact is critical for consideration during automation development. In combination with the fact that 

it is estimated that autonomous vehicles could reach up to 90% of the market share by 2050, it can be concluded 

that automation should be monitor in order for this transition to be as safer as possible. In this direction, this study 

aims to identify critical key performance indicators (KPIs) for safety assessment of autonomous vehicles through 

microscopic traffic simulation. For this purpose, a microscopic simulation analysis was conducted to provide 

multiple measurements quantifying the impacts of connected and autonomous vehicles (CAVs) in different traffic 

conditions. Critical safety KPIs were identified exploiting the microscopic simulation outputs in order to shed light 

on critical aspects that the quantification of safety needs. The obtained KPIs could guide stakeholders in optimizing 
the safety assessment procedures through simulation by emphasizing critical safety aspects. 
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Περίληψη 
 

Ο αντίκτυπος στην οδική ασφάλεια είναι σημαντικός να μελετηθεί στην ανάπτυξη του αυτοματισμού των 

οχημάτων. Συνδυάζοντας το γεγονός ότι εκτιμάται ότι τα αυτόνομα οχήματα θα μπορούσαν να φθάσουν έως και 
το 90% του μεριδίου αγοράς έως το 2050, συμπεραίνεται ότι ο αυτοματισμός πρέπει να παρακολουθεί 

προκειμένου αυτή η μετάβαση να είναι όσο πιο ασφαλής γίνεται. Σε αυτήν την κατεύθυνση, αυτή η μελέτη 

στοχεύει στον εντοπισμό κρίσιμων Βασικών Δεικτών Απόδοσης (KPIs) για την αξιολόγηση της ασφάλειας των 

αυτόνομων οχημάτων μέσω μικροσκοπικής προσομοίωσης της κυκλοφορίας. Για το σκοπό αυτό, 

πραγματοποιήθηκε μια μικροσκοπική ανάλυση προσομοίωσης ώστε να εξαχθούν πολλαπλές μετρήσεις οι οποίες 

αποσκοπούν στην ποσοτικοποίηση  των επιπτώσεων των συνδεδεμένων αυτόνομων οχημάτων (CAV) σε 

διαφορετικές συνθήκες κυκλοφορίας. Βασικοί Δείκτες Απόδοσης (KPIs) ασφάλειας εντοπίστηκαν, 

χρησιμοποιώντας τα αποτελέσματα της μικροσκοπικής προσομοίωσης, προκειμένου να ρίξουν φως σε κρίσιμες 

πτυχές, οι οποίες απαιτούνται για την ποσοτικοποίηση του επίπεδου της ασφάλειας. Οι Βασικοί Δείκτες Απόδοσης 

(KPIs) θα μπορούσαν να καθοδηγήσουν τους ενδιαφερόμενους στη βελτιστοποίηση των διαδικασιών 

αξιολόγησης της ασφάλειας μέσω προσομοίωσης, δίνοντας έμφαση σε κρίσιμες πτυχές της οδικής ασφάλειας. 

 
Λέξεις Κλειδιά: Αυτόνομα Οχήματα, Οδική Ασφάλεια, Αξιολόγηση Ασφάλειας, Βασικοί Δείκτες Απόδοσης, 

Μικροσκοπική Προσομοίωση 

1. Introduction 

Investigating the progress of automobile industry over the last decades, there is a significant 

evolution in technologies integrated into new vehicles regardless of vehicle type (Rajasekhar 

& Jaswal, 2016). These integrated connected technologies aim to mainly support driving tasks. 

Therefore, it can be mentioned that these technologies bring computerization into the vehicles, 
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which leads to reconsider the driver's role since it changes the typical driving functions (Fagnant 

& Kockelman, 2015). This type of computerization pushed the automobile industry one step 

further by planning and developing autonomous vehicles (Rajasekhar & Jaswal, 2016). 

Computerization enables the vehicles to drive on their own on existing roads and navigate 

without direct human input (Rajasekhar & Jaswal, 2016). In short, the definite aim of the 

automobile industry is to create a functional and safe vehicle with the maximum level of 

automation. The maximum level can be considered the SAE level 5, a fully automated vehicle 

without any human input (SAE, 2016). Connected and Autonomous Vehicles (CAVs) are 

expected to dominate the market share in 2050 if the CAV prices decrease at an annual rate of 

15% or 20% (Talebian & Mishra, 2018). 

 

According to Fagnant & Kockelman (2015), Autonomous Vehicles (AVs) have the potential to 

change the transportation systems radically. More specifically, it is estimated that road safety 

levels will be enhanced since road accidents will be prevented with Automated Driving (AD) 

evolution. A recent study revealed that traffic conflicts could be reduced depending on the 

penetration rate of CAVs (Papadoulis et al., 2019). Additionally, AVs are estimated to be safer 

than conventional vehicles by reducing human error (Teoh & Kidd, 2017). Taking into account 

the fact that human error is responsible for 65-95% of accidents (Conche & Tight, 2006; 

NHTSA, 2015), human error will be diminished  when designing autonomous driving concepts. 

An ideal hypothesis for automated driving would be that by removing elements of human error 

from the task of driving, the elimination of accident risk will be accomplished (Fagnant & 

Kockelman, 2015; Sandin, 2016; Teoh & Kidd, 2017; FERSI, 2018). Nevertheless, a more 

realistic assumption is that human error will be replaced by accidents caused by imperfect 

automated systems (FERSI, 2018). Another study revealed that given the current traffic safety 

level, fully autonomous vehicles would have to be driven hundreds of millions of miles to 

demonstrate their reliability in terms of fatalities and injuries (Kalra & Paddock, 2016). In this 

direction, this study intends to support AVs monitoring through simulation in order to be less 

flawed, within reason, and avoid long driving distances by investigating measurements that 

might lead to uncertainty and risky situations.  

 

In addition, it is expected that CAVs will increase road capacity, fuel efficiency, and lower 

environmental emissions (Rune Elvik, 2021; Fagnant & Kockelman, 2015; Mersky & Samaras, 

2016; Ye & Yamamoto, 2018), nevertheless this outcome is highly dependent on 

parametrization of automation systems, as the studies imply. Regarding the advantages at a 

passenger level, a great proportion of the population, such as the elderly, children, and disabled 

will have the opportunity to commute in contrast with the prevailing conditions regarding 

conventional vehicles. Furthermore, shared vehicles will increase radically as commuters will 

not own their vehicle, but they will use an on-demand service. Additionally, the passengers or 

even the driver will be able to execute non-driving related tasks (NDRTs) during driving, e.g., 

working on an electronic device, eating, drinking, reading, watching entertainment content, and 

texting or calling on their phones (Kim et al., 2018). 

 

AVs impacts and their performance have been extensively investigated through simulation 

approaches (Chen et al., 2017; Lam, 2016; Scheltes & de Almeida Correia, 2017; Shen et al., 

2018; Talebpour et al., 2017; Zellner et al., 2016). The simulation inputs concern data from 

various sources such as the network geometry, traffic volume and modal split. More 
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specifically, the data exported by the microscopic simulation can provide an initial, descriptive 

estimation of several impacts. Each vehicle is tracked as it interacts with surrounding traffic as 

well as with the environment. Moreover, microscopic simulation is used widely to evaluate new 

traffic control and management technologies as well as performing analysis of existing traffic 

operations (Owen et al., 2000). Modeling traffic flows allows researchers to simulate the 

driving of every vehicle inside the considered transport network and provide many traffic-

related impacts, while the traffic characteristics are taking into account, leading to higher 

accuracy emissions estimates as well (Lopez et al., 2018; Wen-Xing Zhu & Zhang, 2017). In 

addition, existing literature used the microsimulation method in order to analyze traffic conflicts 

and present the sequence of events with the causative factors of conflicts (Young et al., 2014). 

 

Given the aforementioned argument that CAVs will increase road safety, there is a need to 

identify Key Performance Indicators (KPIs) for safety assessment of CAVs through 

microscopic traffic simulation. This paper aims to assist in that direction by pointing out critical 

safety KPIs that could be evaluated through simulation. The exported KPIs list can guide further 

research in this direction, and it can also be exploited and expanded to other simulation tools or 

use cases. The present research is conducted within the EU HORIZON 2020 “SHOW” project 

that aims to support the migration path towards effective and persuasive sustainable urban 

transport through technical solutions, business models, and priority scenarios for impact 

assessment, by deploying shared, connected, electrified fleets of automated vehicles in 

coordinated Public Transport (PT), Demand Responsive Transport (DRT), Mobility as a 

Service (MaaS) and Logistics as a Service (LaaS) operational chains in real-life urban 

demonstrations.  

 

Simulation procedure conducted within a relevant European project titled LEVITATE, an 

ongoing project, is used in the present study to measure several essential KPIs to be perceived 

through on network level CAV impacts. LEVITATE is also investigating the “Societal Level 

Impacts of Connected and Automated Vehicles” and taxonomy of impacts and models of their 

interrelations were developed within the project (Elvik et al., 2019). More specifically, a list of 

the impact areas arising from the direct operation of CAVs, transport system-wide impacts 

resulting from service and operation models, and societal impacts resulting from changes in the 

transport system were developed. 

 

This study is structured as follows; initially, the current section presents a brief introduction to 

the study aim. Then, the methodology follows, including two main subsections. The first one 

relates to the simulation aim, preparation, and the variables that can be exploited by the safety 

assessment. The second one relates to the KPIs development. After that, results are presented 

by including the final list of the obtained KPIs derived from the simulation along with the KPIs 

description and assessing details. Finally, general conclusions are included by presenting a brief 

description of the aim and results of this study and how stakeholders or policymakers can 

exploit this study, followed by study limitations and future research proposals. 
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2. Methodology 

This section presents the study methodology and is divided in two main subsections. The first 

one describes the microscopic simulation analysis, that was conducted within the LEVITATE 

project, in which the critical KPIs for safety assessment of autonomous vehicles were examined. 

More specifically, the specifications regarding the study network, the use case as well as CAVs 

implementation are described. Moreover, all the required information related to CAV 

parameters, market penetration rate scenarios are also included. The second one refers to the 

KPIs development procedure conducted within the SHOW project and consists of an in-depth 

impact assessment framework. 

 

2.1. Microscopic Simulation  

In order to identify critical key performance indicators (KPIs) for safety assessment, the 

microscopic simulation analysis was selected to provide multiple measurements quantifying 

the impacts of connected autonomous vehicles (CAVs) in different traffic conditions. For the 

requirements of the LEVITATE project, different scenarios were formulated using the Aimsun 

Next mobility modelling software in the city of Athens network in Greece. The scenarios 

differed in terms of the market penetration rate of CAVs (0% - 100%), traffic conditions and 

the implementation of a city automated transport system (CATS). 

 

The investigated network created in Aimsun Next mobility software is the city of Athens 

(Figure 1) and consists of 1,137 nodes and 2,580 road sections. More specifically, the total 

length of road sections is 348 km and the network size reaches approximately 20 km2. The 

model includes data for each road section that concerned geometric as well as functional 

characteristics, namely length, width, number of lanes, directions, free flow speed and capacity. 

In addition, the respective characteristics of nodes were also included in the model network: 

allowed movements, number of lanes per movement, priority, traffic light control plans, free 

speed flow, and capacity. In addition, the OD matrices consisted of 290×292 centroids of the 

study network and a total number of 82,270 car trips and 3,110 truck trips for peak hour. 

Furthermore, the Athens model included 95 bus and 14 trolley lines and 1,030 public transport 

stations as well as service frequencies and waiting times at stops. 

 

Figure 1: The city of Athens in Aimsun software 

 

https://www.sciencedirect.com/science/article/pii/S0263786309000623?casa_token=ktc9MpZdkV0AAAAA:F2mjA60qPr9eJzL-0x4_xBWeA-28TlNRmfmuVElCglqvD2SS9j2CW-nMb7pmWVkd9in6O7Ii
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A point-to-point automated shuttle bus service connecting several points was implemented in 

the large-scale network. Four shuttle bus lines were implemented in the city of Athens in order 

to complement the existing public transport, as shown in Figure 2. The first shuttle bus line, 

Line 1, connects the metro station “Viktoria” (A) with the metro station “Panormou” (B), the 

second shuttle bus line, Line 2, connects the National Garden (A) and Greek Parliament with 

the National Archeological Museum (B), the third, Line 3, connects Omonoia Square (A) with 

Acropolis - Parthenon (B) and the fourth, Line 4, connects metro station “Rouf” (A) with the 

metro station “Neos Kosmos” (B). In addition, this service of sixteen shuttle buses was 

considered to have a total capacity of 10 passengers. Their dimensions were 5 meters in length 

and 2.5m in width. The max operating speed of the buses was 40 km/h, the mean speed 25 

km/h. The frequency of the service was 15 minutes. The total length of the shuttle bus service 

routes was 8 km (Line 1), 6 km (Line 2), 6 km (Line 3) and 8 km (Line 4). 

 

Figure 2: The point-to-point automated shuttle service’s bus lines 

Overall, the following scenarios were formulated: 

1) Baseline (no point-to-point shuttle bus service operation) 

2) Point-to-point shuttle bus service operation in mixed traffic conditions during peak hour 

3) Point-to-point shuttle bus service operation using dedicated lane during peak hour 

4) Point-to-point shuttle bus service operation in mixed traffic conditions during off-peak 

hour 

 

Within the present research, two main driving profiles were simulated for modelling connected 

autonomous vehicles (CAVs), as in other studies (Mesionis et al., 2019; Sukennik, 2018) and 

are the following: 

• 1st Generation (Cautious): limited sensing and cognitive ability, long gaps, early 

anticipation of lane changes than human-driven vehicles and longer time in give way 

situations. 

• 2nd Generation (Aggressive): advanced sensing and cognitive ability, data fusion usage, 

confident in taking decisions, small gaps, early anticipation of lane changes than human-

driven vehicles, and less time in give way situations. 
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The autonomous shuttle buses of the service were simulated as 1st generation CAVs since they 

were characterized as cautious, and it was assumed that this profile was more appropriate for a 

public transport mode. Similarly, the autonomous trucks were simulated as 1st generation 

CAVs, as well. In this study, all the autonomous vehicles that were simulated as well as the 

shuttle buses were assumed to be exclusively electric. 

 

In modelling CAVs, their lane-changing behavior was considered different from human-driven 

vehicles behavior. Hence, the Gipps lane-changing model was applied (Gipps, 1986). This 

model estimates the decisions that drivers have to make before changing lane and ensures that 

the simulated drivers behave logically in situations that are similar in real traffic conditions. In 

this model, the sensitivity factor controls the clearance distance, and the overtake speed 

threshold is the percentage of the desired speed of a vehicle that decides to overtake. The CAV 

parameters, used in the microsimulation procedure, constitute findings derived from the 

LEVITATE project and were based on an extensive literature review as well as partners’ 

knowledge. All vehicle parameters are shown in Table 1. 

Table 1: Microsimulation CAV parameters of LEVITATE 

Factors Human Driven 

Vehicle 

1
st
 Generation 

CAV 

2
nd

 Generation  

CAV 

Max. acceleration 

Mean 5.0 4.5 3.5 

Min 3.0 3.5 2.5 
Dev 0.2 0.1 0.1 

Max 7.0 5.5 4.5 

Normal deceleration 

Mean 3.4 4.0 3.0 

Min 2.4 3.5 2.5 
Dev 0.25 0.13 0.13 

Max 4.4 4.5 3.5 

Max. deceleration 

Mean 5.0 7.0 9.0 
Min 4.0 6.5 8.5 

Dev 0.5 0.25 0.25 

Max 6.0 7.5 9.5 

Clearance 

Mean 1.0 1.0 1.0 
Min 0.5 0.8 0.8 

Dev 0.3 0.1 0.1 

Max 1.5 1.2 1.2 

Lane 
Changing 

Model 

Overtake speed threshold 90% 90% 85% 

Look ahead distance 
Min 0.8 1.1 1.0 

Max 1.2 1.3 1.25 

Safety margin 
Min 1.0 1.0 0.75 

Max 1.0 1.25 1.0 

Reaction time in car following (sec) 0.8 0.9 0.4 

More specifically, the first CAV generation was considered as cautious vehicle and the second 

one as aggressive. However, acceleration and deceleration of CAVs were selected to be slower 
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than human-driven vehicles based on a study conducted by Karjanto et al. (2016), in order to 

enable in-vehicle activities for the users, apart from driving. For this reason, the second 

generation was consider to have slower values than the first one, except from the normal 

deceleration that is higher but allows human occupants safety and considers in-vehicle 

activities, as well. Moreover, the “Look ahead distance” parameter, also known as “Distance 

Zone Factor” was also considered to be different between the conventional vehicles and the two 

CAV generations. This parameter emulates connectivity in the sense that autonomous vehicles 

will have better knowledge of junctions and turnings. Therefore, autonomous vehicles 

considered changing lanes earlier than human-driven vehicles. The “reaction time” parameter 

is the parameter that concerns the reaction time in car-following and, along with sensitivity 

factor, affects time headway. According to Eilbert et al. (2019), Adaptive Cruise Control (ACC) 

applications seem to be bimodal, which have either a gap setting 1.1 sec to eliminate cut-in 

vehicles or a 1.5 sec gap likely due to a lack in trust of the ACC system being able to stop in 

time. For these reasons, ACC driving appears to have a higher average time gap than manual 

driving. Therefore, the first CAV generation presented higher reaction time value compared to 

conventional vehicles. 

Regarding the implementation of CAVs, different penetration rate scenarios were simulated 

and are presented in Table 2. The cautious CAVs, considered to be the first generation, appear 

first in these scenarios and are followed by the aggressive CAVs until the last scenario, where 

only second generation CAVs are included. 

Table 2: The CAV market penetration rate scenarios of LEVITATE 

Type of Vehicle A B C D E F G H 

Passenger Vehicles 

Human-driven Car 100% 80% 60% 40% 20% 0% 0% 0% 

1st Generation CAV 0% 20% 40% 40% 40% 40% 20% 0% 

2nd Generation CAV 0% 0% 0% 20% 40% 60% 80% 100% 

Freight Vehicles 

Human-driven Truck 100% 80% 40% 0% 0% 0% 0% 0% 

Freight CAV 0% 20% 60% 100% 100% 100% 100% 100% 

For each one of these scenarios, the implementation of the point-to-point autonomous shuttle 

service was also simulated. Therefore, 32 scenarios were simulated in total (8 market 

penetration rate scenarios for each of the 4 point-to-point implementation scenarios). 

Additionally, with regards to each scenario, 10 different replications with random seeds were 

simulated as well. The simulation duration of each scenario was one hour, and the simulation 

time step was 5 minutes. 
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2.2. KPIs development  

In an effort for a holistic impact assessment framework, the impacts of automation are assessed 

under different scenarios by subjective stakeholder analysis, as well as objective measurements 

based on simulations. For this purpose, within SHOW, through a framework that unites these 

different components, detailed impact assessments were performed for specific impact areas. 

This detailed impact assessment aggregated several KPIs from demonstration sites and 

simulations in order conclusions to be drawn. 

 

The SHOW framework concerns several phases of demonstrations and simulations. Initially, 

stakeholders were identified, autonomous service impact criteria as well as their scenarios 

related on pilot demonstrations were defined. Then, based on existing literature of CAV 

deployment, impacts key selection criteria and their respective KPIs were acknowledged. 

Afterwards, demos and simulations were identified and mapped to the scenarios enabling the 

definition of KPIs. Lastly, an overall analysis was conducted comparing scenarios in relation 

to impact criteria and KPIs from simulations. 

 

The included KPIs in the SHOW impact assessment framework were analyzed in the following 

different activities, as calculated from the in-depth analyses from the different impact areas or 

collected from demonstration sites and simulations: 

• Road safety 

• Traffic efficiency, energy, and environmental impacts 

• Societal, employability and equality 

• Urban logistics 

• User experience, awareness and acceptance 

 

3. Results 

Supported by the literature review, KPIs were defined and for the evaluation of impacts of 

systems and services within the area of CAV and representing holistic impact criteria (Anund 

et al., 2020). The metrics needed for each KPI will be collected either through measurements, 

observations at the demonstration site, simulations or user surveys. In addition, the KPIs were 

matched to research questions or target to ensure that all CAV systems and service activities 

are adequately covered by a holistic collection of relevant to simulation KPIs. The sources 

identified within the impact assessment of the SHOW project also led to the definition of 

relevant KPIs presented in Table 3. Relevant KPIs were also divided into the following 

categories: 

• Traffic safety 

• Traffic efficiency 

• Environment and energy efficiency 
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Table 3: SHOW relevant KPIs for simulations 

Broader 

category  
Impact  Research Question or target  

Traffic 

safety 

Road accidents (leading 

to human injury)  

What is the number of accidents that caused even the slightest of injury 

during the operation of the AV?  

Conflicts  What is the number of conflicts with other road users and infrastructure 

during the operation of the AV?  

Safety enhancement  What is the safety enhancement induced by AV services when compared 

to the existing (public) transport services?  

Vehicle occupancy  Safety enhancement  

Illegal overtaking  Safety enhancement  

Lateral and longitudinal 

headways  

Safety enhancement  

Harsh cornering  Safety enhancement  

Road accidents (leading 

to material damage)  

What is the number of accidents that damage to property?  

Traffic flow  Safety enhancement  

Traffic 

efficiency 

Average speed  What is the average speed of pilot vehicles on the pilot route?  

Acceleration variance  How does the acceleration of pilot vehicle vary on the pilot route?  

Hard brake events  What is the number of hard breaking events per km?  

Non-scheduled stops  How often does a pilot vehicle have to make a non-scheduled stop?  

Service reliability  How often did the pilot vehicle arrive/depart as scheduled?  

Speed per vehicle type  How does the introduction of pilot vehicles impact the average speed for 

all vehicle types?  

Vehicle delay  How does the introduction of pilot vehicles impact the average vehicle 

delay for all vehicle types?  
Vehicle stops  How does the introduction of pilot vehicles impact the number of stop?  

Hard braking events in 

traffic  

How does the introduction of pilot vehicles impact the number of hard 

braking event?  

Total intersection delay  How does the introduction of pilot vehicles impact the vehicle delay on 

intersection?  

Total network travel time 

per vehicle type  

How does the introduction of the new mobility system affect the total 

network travel time?  

Total mileage  How does the introduction of the new mobility system affect the vehicle 

kilometres travelled per mode?  

Total network delay  How does the introduction of the new mobility system affect the total 

network delay?  

Average network speed  How does the introduction of the new mobility system affect the average 
network speed?  

Environment 

and energy 

efficiency 

Energy use  How does the introduction of the new mobility system change energy 

consumption of vehicles?  

CO2, PM, NOx 

emissions  

How does the introduction of the new mobility system change the 

amount of vehicle emissions related to transport in the area of interest?  

Air quality  How does the introduction of the new mobility system affect the air 

quality in the area of interest?  

Noise levels  How does the introduction of the new mobility system affect the traffic 

noise in the area of interest?  

Reduction in CO2  90% for CO2 at city level  

Reduction in noise level  30% reduction  

Reduction in energy 
consumption  

20% for passenger transport, 40% for freight  

Reduction in energy 

consumption  

10% reduction  
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Moreover, through microscopic simulation, multiple measurements quantifying the impacts of 

CAVs in different traffic conditions were extracted. Table 4 presents some of the traffic, 

environmental and safety on network level impacts based on the KPIs of Table 3 that were 

available to be exported through simulation. These impacts were influenced by the market 

penetration rate as well as the automated shuttle service operation scenario and are the 

following: 

• Number of conflicts: total number of conflicts 

• Traffic flow: mean flow (veh/h) 

• Average speed: mean speed (km/h) 

• Delay Time: mean delay time (sec/km) 

• Number of stops: total number of stops of all vehicles in the simulation period in the 

whole network 

• Travel Time: mean travel time (sec/km) 

• Distance Travelled: total distance travelled of the vehicles that exited the network (km) 

• CO2 Emissions: total CO2 emissions (kg) 

• NOx Emissions: total NOx emissions (kg) 

• PM10 Emissions: total PM10 emissions (kg) 

 

The environmental impacts obtained by the simulation using the Aimsun software, were 

calculated applying the formula developed by Panis et al. (2006). This model computes carbon 

dioxide (CO2), nitrogen oxides (NOX) and particulate matter (PM10). In addition, through 

simulation, the trajectories files of all scenarios were extracted and analyzed in the SSAM tool. 

This analysis provided the number of conflicts that occurred in the simulation scenarios and are 

shown in Table 4, as well. 

 

The microsimulation results showed that the number of conflicts was reduced when more 

autonomous vehicles existing the network during peak hour conditions and remained constant 

during off peak hour. Also, it was revealed that the number of conflicts was approximately the 

same for the different automated shuttle bus service scenarios. Regarding traffic-related 

impacts, if the shuttle bus drives on a dedicated lane, then delay and travel time, traffic flow, 

number of stops and total distance travelled remain the same for all mobility scenarios. In 

addition, the existence of the shuttle bus service did not significantly affect traffic 

measurements for all market penetration scenarios.  
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Table 4: Network level Impacts for different simulation scenarios 

 

As can be observed, automation decreased delay and travel time during both peak hour and off 

peak hour conditions for the last two market penetration rate scenarios while for the rest these 

factors remained constant. In addition, traffic flows, the number of stops and total distance 

travelled values seemed to be increased when the number of autonomous vehicles was increased 

for most of the market penetration rate scenarios. The total distance travelled varied among the 

scenarios since the traffic conditions were different due to the introduction of automation and 

the different number of vehicles exiting the network. Furthermore, the introduction of CAVs, 

as well as the shuttle bus service different implementations led to approximately similar average 

speed, due to the fact that the study network was a highly congested area and therefore large 

differences in mean speed were not expected. Concerning emissions, the CO2, NOx and PM10 

levels were significantly lower when the number of CAVs was increased. Despite of the number 

 Impacts A B C D E F G H 

N
o
 p

o
li

cy
 i

n
te

rv
en

ti
o
n
 Number of conflicts 142,212 120,636 94,324 98,203 71,640 52,373 76,424 76,066 

Traffic flow (veh/h)      44,385       52,805       52,885       45,338       37,885       31,665       61,947       64,102  
Average speed (km/h)             21              21              21              21              21              20              23              23  
Delay Time (sec/km) 243 215 214 215 219 234 141 133 
Number of stops    251,630     281,888     279,662     253,567     223,436     203,093     345,147     368,191  
Travel Time (sec/km)           317            293            295            297            304            322            230            223  
Distance Travelled (km) 90,542 113,469 113,750 97,758 80,939 68,180 138,733 144,848 

CO2 Emissions (kg) 72,367 60,312 43,301 25,855 13,574 2,025 3,250 3,396 
NOx Emissions (kg) 258 211 139 68 47 27 32 32 
PM10 Emissions (kg) 12 11 8 5 2 1 1 1 

M
ix

ed
 t

ra
ff

ic
 –

 P
ea

k
 h

o
u
r Number of conflicts 142,756 118,797 110,906 97,758 72,147 52,633 76,027 75,304 

Traffic flow (veh/h)      44,309       52,634       52,521       45,086       38,059       31,639       61,602       63,972  
Average speed (km/h)             21              21              21              21              21              20              23              23  
Delay Time (sec/km) 245 216 213 211 220 235 141 133 
Number of stops    250,333     281,745     277,019     250,437     226,743     202,368     341,576     366,750  

Travel Time (sec/km)           319            293            293            294            305            323            230            222  
Distance Travelled (km) 90,141 113,297 112,955 96,914 81,461 68,085 137,776 144,550 
CO2 Emissions (kg) 72,448,076 60,249,674 43,144,951 25,776,612 13,592,004 2,025,099 3,224,744 3,381,025 
NOx Emissions (kg) 258,831 210,899 138,723 67,716 47,459 27,436 31,398 32,108 
PM10 Emissions (kg) 12,178 10,932 7,976 4,581 2,387 590 981 1,032 

D
ed

ic
at

ed
 l

an
e 

–
 P

ea
k
 h

o
u
r Number of conflicts 142,125 121,369 112,595 98,816 70,901 53,207 76,881 76,532 

Traffic flow (veh/h)      44,309       52,634       52,521       45,086       38,059       31,639       61,602       63,972  

Average speed (km/h)             21              21              21              21              21              20              23              23  
Delay Time (sec/km) 247 216 214 215 222 234 140 134 
Number of stops      44,309       52,634       52,521       45,086       38,059       31,639       61,602       63,972  
Travel Time (sec/km)             21              21              21              21              21              20              23              23  
Distance Travelled (km) 89,319 113,272 114,589 96,901 80,687 67,811 138,650 145,091 
CO2 Emissions (kg) 72,124,828 60,207,343 43,316,539 25,839,178 13,591,489 2,037,809 3,252,943 3,390,728 
NOx Emissions (kg) 258,495 210,803 139,068 67,677 47,437 27,558 31,608 32,140 
PM10 Emissions (kg) 12,064 10,930 8,060 4,593 2,367 594 990 1,036 

M
ix

ed
 t

ra
ff

ic
 –

 O
ff

 h
o
u
r Number of conflicts 56,454 52,987 48,229 44,602 40,530 30,128 35,596 32,421 

Traffic flow (veh/h)      39,195       45,722       46,342       46,033       42,657       37,961       49,243       49,485  
Average speed (km/h)             25              25              25              25              24              23              26              26  
Delay Time (sec/km) 137 114 107 107 115 125 74 70 
Number of stops    197,205     222,725     224,270     237,819     234,426     220,827     243,423     247,518  
Travel Time (sec/km)           212            193            189            191            202            214            165            160  
Distance Travelled (km) 88,346 106,617 108,672 110,054 101,725 89,795 117,085 117,839 
CO2 Emissions (kg) 46,289,044 38,236,408 27,486,297 17,414,275 10,186,184 3,016,915 3,886,832 3,896,277 

NOx Emissions (kg) 164,533 134,199 92,105 53,923 42,773 31,911 33,828 33,905 
PM10 Emissions (kg) 9,063 8,143 6,133 4,172 2,474 899 1,176 1,180 
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of stops, the emissions were reduced due to the increase of the CAVs that were considered to 

be electric. In addition, the different implementation types of the automated shuttle bus service 

did not seem to have any significant differences. In general, the introduction of CAVs seem to 

lead at first to more congested traffic conditions and finally shift to significantly improved 

conditions. That is caused by the shift from high percentages of human-driven vehicles to mixed 

traffic conditions and finally to high percentages of CAVs. 

 

4. Conclusions 

The present study aims to identify critical key performance indicators (KPIs) for safety 

assessment of autonomous vehicles through traffic microscopic simulation which is a solid tool 

for testing policies, new mobility technologies and alternatives before intervening in reality. 

For this purpose, a microscopic simulation analysis was conducted to provide multiple 

measurements quantifying the impacts of CAVs in different traffic conditions. Different 

scenarios were formulated using the Aimsun Next mobility modelling software in the city of 

Athens network.  

 

From the knowledge gained from the microsimulation, insights are provided for factors that 

should be taken into account for the development of sustainable urban mobility. These insights 

take the form of a new group of KPIs matching the research questions of the SHOW research 

project. Traffic safety, traffic efficiency, and energy - environmental efficiency were found to 

be the most critical groups of indicators for the safety and impact assessment. Many of the 

proposed KPIs showed significant and essential impacts of CAVs in the examined urban 

environment, as the results from the microsimulation showed. More specifically, the number of 

conflicts was significantly reduced when more CAVs were present in the network during peak 

hour conditions and remained constant during off peak hour. Regarding traffic-related impacts, 

automation decreased delay and travel time during both peak hour and off peak hour conditions 

for high CAV market penetration rates. In addition, traffic flows, number of stops and total 

distance travelled values seemed to be increased when the number of autonomous vehicles was 

increased. Finally, CO2, NOx and PM10 levels were significantly lower when the number of 

CAVs was increased. The obtained KPIs could guide stakeholders in optimizing the safety 

assessment procedures through simulation by emphasizing critical safety aspects.  

 

The present study does have certain limitations. An overall analysis comparing these different 

scenarios in relation to impact criteria and KPIs from simulations is not conducted in this study. 

Since traffic microsimulation was employed, assumptions regarding CAVs modelling were 

unavoidable. As a consequence, several pending issues remain open for future research. Various 

impacts in relation to other services need to be further investigated, taking into account different 

networks, vehicle types and automation levels. A further analysis could also be conducted in 

order to score the KPIs evaluation. The scoring method could allow stakeholders and decisions-

makers to consider the perceptions and concerns while simultaneously considering the 

performance of scenarios from KPI data obtained from demonstrations and simulations. 
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