

10th INTERNATIONAL CONGRESS
ON TRANSPORTATION
RESEARCH

ICTR 2021

September 1-3 Rhodes, Greece

Investigation of speeding and aggressive behavior of professional drivers on highways through an innovative smartphone application

Armira Kontaxi

Transportation Engineer, PhD Candidate

Together with:

OSEVED

Apostolos Ziakopoulos, George Yannis

National Technical University of Athens Department of Transportation Planning and Engineering

Eleni Konstantina Frantzola, George Kostoulas OSeven Private Company

Background

- The Internet of Things (IoT) constantly offers new opportunities and features to monitor and analyse driver behavior through:
 - Widespread use of smartphones and social media
 - Effective data collection and handling
 - Big Data Analysis
- ➤ Naturalistic driving experiments via smartphones allow for:
 - Investigation of the impact of risk factors on driver behavior
 - Identification of aggressive and dangerous driving profiles
 - Provision of driver feedback

The BeSmart project

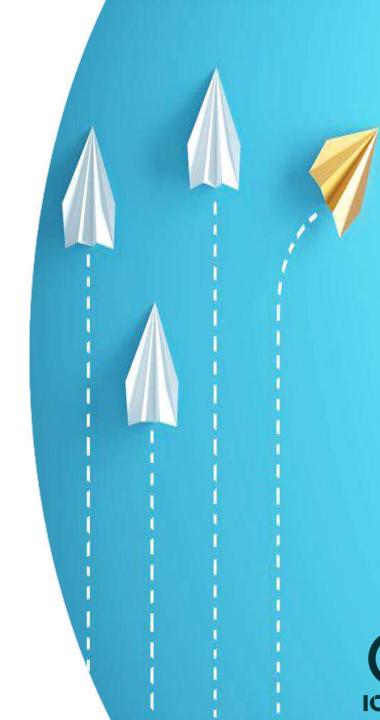
Project partners:

- National Technical University of Athens,
 Department of Transportation Planning and Engineering www.nrso.ntua.gr
- OSeven Private Company www.oseven.io

> Duration of the project:

- 42 months (July 2018 January 2022)
- ➤ Operational Program:
 - "Competitiveness, Entrepreneurship and Innovation" (EPAnEK) of the National Strategic Reference Framework (NSRF)

BESMART


The BeSmart Objectives

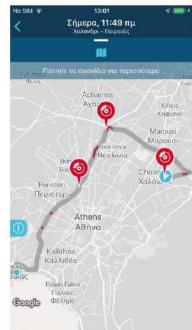
- Development of an innovative and seamless Internet of Things application
- Assessment and improvement of behavior and safety of all drivers (car drivers, powered two-wheelers, cyclists, professional drivers) along multi-modal trips
- Organization and exploitation of a naturalistic driving experiment of 200 drivers for 12 months

Research Scope

- ➤ Which are the critical driving parameters that affect speeding and aggressive behavior of professional drivers on highways using data from:
 - Smartphone devices
 - Naturalistic driving experiment
- Can incentives in a social gamification scheme through a smartphone application improve driving behavior?

The BeSmart driving experiment

- ➤ The experiment consists of different phases differing in the type of feedback provided to drivers
- The present study refers to Phases A and B:
 - Phase A personalized feedback; namely a trip list and a scorecard regarding their driving behavior are provided to drivers
 - Phase B 30-day competition with prizes for safe driving
- A total of 5,345 trips from a sample of 19 professional drivers were recorded


The BeSmart Application

Driving behavior characteristics

- > Speeding
- Harsh braking
- > Harsh acceleration
- > Harsh cornering
- Mobile phone use

Travel behavior characteristics

- > Total distance
- Road network type
- Risky hours driving
- Vehicle type

Smartphone data collection

- A variety of APIs is used to read mobile phone sensor data
- Data is transmitted from the mobile App to the central database
- Data are stored in a sophisticated database where they are managed and processed
- Indicators are designed using machine learning algorithms and big data mining techniques
- State-of-the-art technologies and procedures in compliance with personal data protection laws (GDPR)

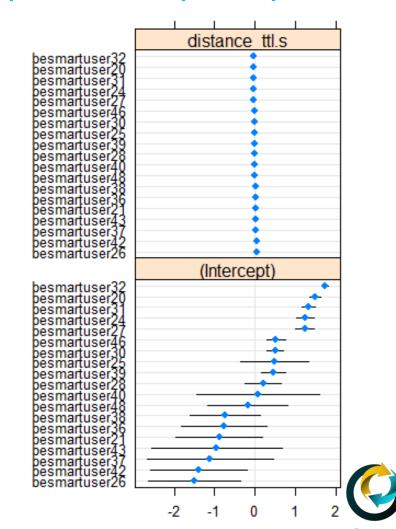
Methodology

Analysis scope

Among the recorded risk factors, the frequency of harsh events and speeding is chosen to be investigated in the present study

Selection of statistical method

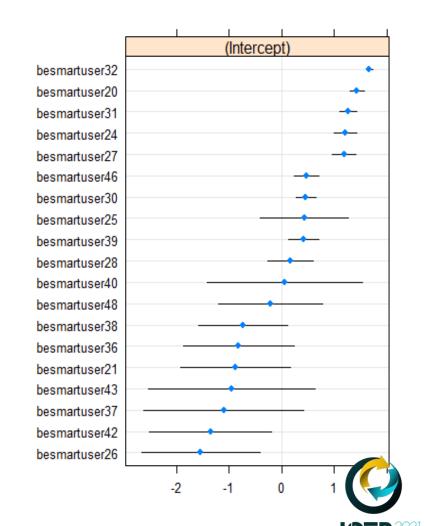
- Need for event prediction data counting (data modeling)
- Generalized Linear Mixed-Effects Models (GLMMs) to capture different driving behaviors, given by the following formula:


$$\log(\lambda_i) = \beta_{0i} + \beta_{ji} x_{ji} + \beta_{n-1} x_{n-1} + \varepsilon$$

Results (1/3)

GLMMs for the percentage of travelled time above the speed limits per trip

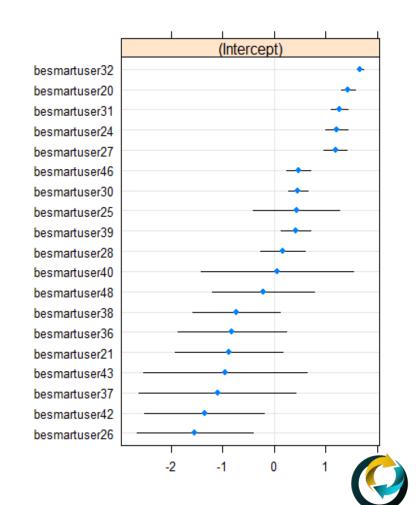
Trip characteristic	Estimate	s.e.	p-value	Sig.	Rel. Risk Ratio
Intercept	-12.581	1.736	0.000	***	-
Competition	-1 <mark>.49</mark> 2	0.339	0.000	***	0.225
Trip Duration	- 6.148	0.421	0.000	***	0.002
Harsh Acceleration	0.422	0.027	0.000	***	1.525



Results (2/3)

GLMMs for the frequencies of harsh acceleration events per trip

1	Trip characteristic	Estimate	s.e.	p-value	Sig.	Rel. Risk Ratio
	Intercept	-3.531	0.341	0.000	***	-
(Competition	-1.054	0.219	0.000	***	0.348
	Trip Duration	0.444	0.026	0.000	***	1.558
1	Weekend	-0.414	0.175	0.000	*	0.661



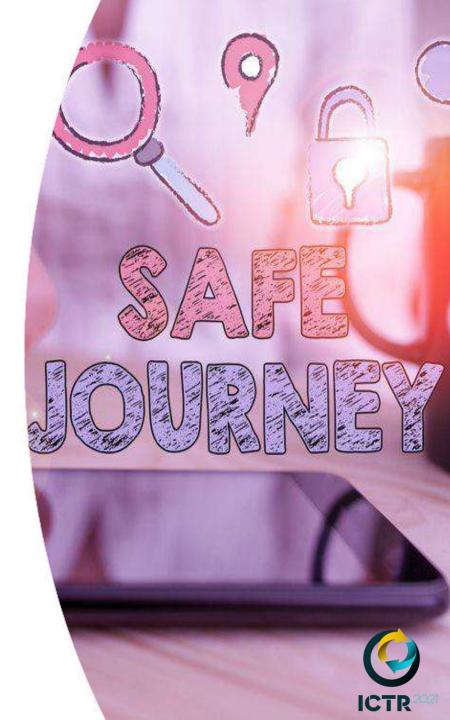
Results (3/3)

GLMMs for the frequencies of harsh braking events per trip

Trip characteristic	Estimate	s.e.	p-value	Sig.	Rel. Risk Ratio
Intercept	-2.384	-8.161	0.000	***	-
Competition	-0.907	-7.738	0.000	***	0.404
Trip Duration	0.447	45.106	0.000	***	1.564
Weekend	-0.290	-3.432	0.001	***	0.748

Conclusions (1/2)

Impact of detailed trip parameters


- ➤ Trip duration has a different impact on speeding (negative correlation) compared to harsh events (positive correlation)
- Driving during the weekends seems to reduce the frequency of harsh events; both accelerations and brakings
- Harsh accelerations are associated with the odds of someone exceeding the speed limits, outlining a pattern of an overall unsafe driving behavior

Conclusions (2/2)

Impact of incentives and motivations

- The present research quantifies the positive impact of the 30-day competition on all the three examined human risk factors
- Rewarding safe driving behavior and providing drivers with motivations and incentives within a social gamification scheme has successful results
- State-of-the-art interventions can include approaches for driver training and support through driver behavior monitoring and feedback tools

Future research

- ➤ Analysis of different driving behavior parameters identified by the road safety literature as risk factors (e.g. mobile phone distraction)
- Analyses per gender, age, history of accidents, self-assessment, driving experience and more demographic characteristics
- Comparative analysis of drivers using different vehicle types

10th INTERNATIONAL CONGRESS
ON TRANSPORTATION
RESEARCH

ICTR 2021

September 1-3 Rhodes, Greece

Investigation of speeding and aggressive behavior of professional drivers on highways through an innovative smartphone application

Armira Kontaxi

Transportation Engineer, PhD Candidate

Together with:

Apostolos Ziakopoulos, George Yannis

National Technical University of Athens Department of Transportation Planning and Engineering

Eleni Konstantina Frantzola, George Kostoulas
OSeven Private Company