

10th INTERNATIONAL CONGRESS
ON TRANSPORTATION
RESEARCH

ICTR 2021

September 1-3 Rhodes, Greece

Public opinion on e-scooters in Athens: a stated preference approach

Armira Kontaxi

Transportation Engineer, PhD Candidate

Together with: Vassilis Maragkoudakis, Katerina Deliali, George Yannis

Background

- Negative outcomes of car-dominated transport systems increasingly occupy transport planners, specifically in urban contexts
- Congestion, air pollution, and noise have become significant problems in cities, diminishing quality of life
- Urban transport planners have welcomed escooters as an alternative to motorized individual transport
- The public has met e-scooters with both enthusiasm and skepticism

Scope

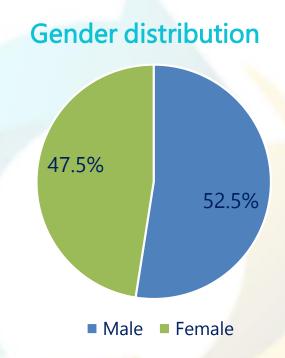
The objective of the present study is the investigation of the parameters influencing the use of e-scooters in Athens through a stated preference analysis

Data Collection

Stated preference method

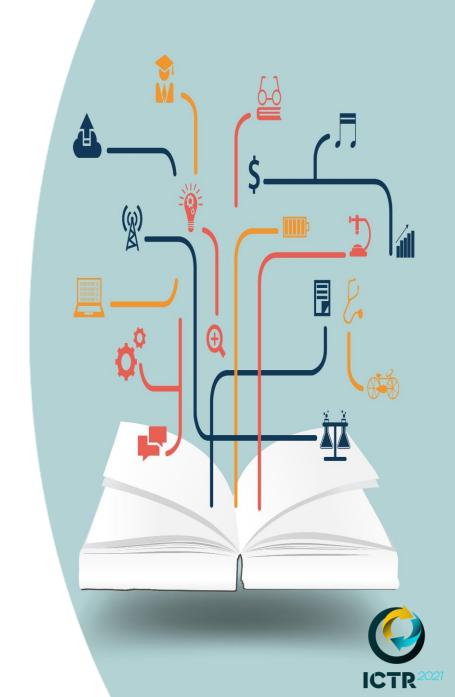
The online survey data were collected from a sample of 202 participants

Questionnaire design


- 1st part: mobility and driving behavior habits of the participants
- 2nd part: opinions on e-scooters, advantages disadvantages
- 3rd part: 8 scenarios, 3 parameters: time, cost, comfort, 3 alternatives: e-scooters, public transport, walking

4th part: Demographic characteristics

Descriptive statistics



Methodology

Selection of logistic regression models

- Multinomial model: travel mode choice among e-scooter, public transport and walking
- ➤ Binary model: future use of e-scooter
- Vility function: $U_{in} = a_0 + a_1x_1 + a_2x_2 + \cdots + a_nx_n + \varepsilon_{in}$
- Probability of choosing each alternative:

$$P_i = \frac{e^{U_i}}{1 + e^{U_j}}$$

Results (1/2)

Multinomial Logistic Model for transport mode choice

	Multinomial Logistic Model						
Independent Variables	e-scooter			walking			
	В	P-value	Odds Ratio	В	P-value	Odds Ratio	
Constant	-2.178	< 0.01	_	-0.709	0.115	-	
time	0.078	< 0.01	0.92	-0.078	<0.01	0.92	
cost	0.378	< 0.01	0.69	-0.378	<0.01	0.69	
comfort	0.512	< 0.01	0.6	-0.512	<0.01	0.6	
gender (woman=1)	0.571	0.014	1.77				
dis_adverse_weather (yes=1)				-1.37	<0.01	0.25	
adv_parking (yes=1)	1.062	0.011	2.89	1.194	<0.01	3.3	
family_two_children (yes=1)	-1.051	< 0.01	0.35				
family_four_children (yes=1)	2.104	< 0.01	8.2				
used_e-scooter_before (yes=1)	1.404	< 0.01	4.07	0.617	0.027	1.85	
Athens_habitant (yes=1)				1.663	<0.01	5.28	
dis_road_infra (yes=1)	-0.947	< 0.01	0.39	0.849	<0.01	0.43	
work_hours_flexibility (yes=1)	0.52	0.028	1.68				
unemployeed (yes=1)	-1.484	< 0.01	0.23				
future_use_e-scooter (yes=1)	1.493	< 0.01	4.45	-0.578	0.014	0.56	
often_use_public_transport (yes=1)	-1.162	< 0.01	0.31				
McFadden R ²		0.215					

Results (2/2)

Binary Logistic Model for e-scooter use

	Binary Logistic Model				
Independent Variables	В	P-value	Odds Ratio		
Constant	-0.31	0.194	-		
car_owner (yes=1)	-0.809	< 0.01	0.45		
dis_adverse_weather (yes=1)	-0.904	< 0.01	0.4		
adv_speed (yes=1)	1.445	< 0.01	4.24		
adv_fun (yes=1)	2.877	< 0.01	17.76		
age>36 (yes=1)	-1.702	< 0.01	0.18		
use_e-scooter_ofetn (yes=1)	1.802	< 0.01	6.06		
Hosmer and Lemeshow test	0.223				

Conclusions (1/2)

- The results show that the probability of choosing an e-scooter depends largely on the cost, time and comfort
- The faster and the lower-cost the trip, the more likely the respondents to choose escooters over other means of transport
- The familiarity of the respondents with escooters plays a particularly crucial role in choosing to use them in the future

Conclusions (2/2)

- A large percentage of Athenians seem to be sceptic towards the use of e-scooters, mainly due to reduced travel safety and higher cost compared to the means of public transport
- The fun factor is very important for those who state that they intend to use an escooter in the future
- Women appear to be more willing to use an e-scooter than men

Future Research

- More research is needed to understand the implications of e-scooters for urban transport systems through:
 - Expansion of the sample of the survey

10th INTERNATIONAL CONGRESS
ON TRANSPORTATION
RESEARCH

ICTR 2021

September 1-3 Rhodes, Greece

Public opinion on e-scooters in Athens: a stated preference approach

Armira Kontaxi

Transportation Engineer, PhD Candidate

Together with: Vassilis Maragkoudakis, Katerina Deliali, George Yannis

