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Περίληψη 
 

Σε ένα περιβάλλον συνεργατικών οχημάτων, κάθε όχημα (αποστολέας) ανταλλάσσει μηνύματα με τα 

γειτονικά του (παραλήπτες) εντός του εύρους μετάδοσης του ασύρματου (κυκλοφοριακού) δικτύου. Η 

περιοχή που περιλαμβάνει όλα τα οχήματα, που αλληλοεπιδρούν μεταξύ τους, ονομάζεται περιοχή 
επιρροής του αποστολέα. Στόχος της παρούσας εργασίας είναι η εκτίμηση της περιοχής επιρροής 

χρησιμοποιώντας τις αρχές της θεωρίας της πληροφόρησης και δεδομένα υψηλής ευκρίνειας από μη 

επανδρωμένα αεροσκάφη. Για το σκοπό αυτό, υπολογίστηκε η αμοιβαία πληροφόρηση μεταξύ δύο 

οχημάτων, λαμβάνοντας τις ταχύτητές τους ως τυχαίες μεταβλητές. Για τέσσερις χρονικές περιόδους 
υπολογίστηκε ο μέσος όρος της αμοιβαίας πληροφόρησης του εξεταζόμενου οχήματος με τους γείτονές 

του για 20 διαφορετικές ακτίνες. Η ακτίνα για την οποία ο μέσος όρος της αμοιβαίας πληροφόρησης 

του εξεταζόμενου οχήματος με τα γειτονικά παρουσιάζει την ελάχιστη τιμή, θεωρείται κρίσιμη. Βάσει 
των αποτελεσμάτων, στις περισσότερες περιπτώσεις, η πυκνότητα του οδικού δικτύου αποτελεί 

καθοριστικό παράγοντα για την αξιόπιστη εκτίμηση της περιοχής επιρροής του οχήματος. 

 

Λέξεις κλειδιά: Συνεργατικά οχήματα, περιοχή επιρροής, αμοιβαία πληροφόρηση, δεδομένα υψηλής ευκρίνειας, 

πυκνότητα οδικού δικτύου, ταχύτητα. 

 

Abstract 

 

Under the Cooperative Vehicles environment, each vehicle (sender) exchanges messages with its 

surrounding vehicles (receivers) within the transmission range of the wireless (vehicular) network. The 

area including all vehicles influencing each other is called influence area of the sender. The aim of this 

work is to estimate the influence area of vehicles using the principles of information theory and high-
definition data collected via drones. For this purpose, we computed the mutual information between 

pairs of vehicles, considering their velocities as random variables. For four time periods the average 

mutual information between the ego-vehicle and its neighbors is computed for 20 different radius values. 
The radius that corresponds to the minimum of the average mutual information between the vehicle and 

its neighbors is considered critical. The results indicate that, in most cases, road density is a critical 

factor for the reliable estimation of the vehicle’s area of influence. 

 

Keywords: cooperative vehicles, area of influence, mutual information, high-definition data, road density, 

speed. 
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1. Introduction 

Vehicle-to-vehicle (V2V) communication is one of the Intelligent Transportation Systems 

(ITS) technologies aiming to increase road safety and improve human driving experience and 

behavior. Cooperation and connectivity among vehicles are based on the efficient transmission 

of information related to their kinematic characteristics, traffic conditions or incident 

occurrence (European Commission, 2019). In the roads of the near future, each vehicle (sender) 

will exchange messages with its surrounding vehicles (receivers) within the transmission range 

of the wireless (vehicular) network. Within this range, the position and kinematic characteristics 

(e.g speed) of the vehicles determine how their behavior needs to be adapted based on the 

information received. The area around the sender inside of which all vehicles influence each 

other is the area of influence of the sender (ego – vehicle) and it refers to the spatial demarcation 

of its external environment.  

Despite the fact that both the wireless vehicular communication and the mutual information 

(MI) are widely studied, limited research has been carried out combining these two areas. The 

existing literature on the wireless vehicular communication range reflects a maximum range of 

300 m for Vehicular Networks (VANETs) (Yu et al., 2007, Torrent-Moreno, 2007, Jiang et al., 

2008) which is consistent with experimental measurements of dedicated short-range 

communications (DSRC) performed to date (Kukshya et al., 2006, Cheng et al., 2007, Bai et 

al., 2010, Benin et al., 2012). In these studies, it is noted that communications in urban 

environments normally involve a range of approximately 140 m., while those in non-urban 

environments achieve a range of approximately 300 m. It is for this reason that the majority of 

the studies consider the range of the wireless communication network as a fixed number from 

140m to 300m. Wang and Chou (2009) presented NCTUns (EstiNet Network Simulator and 

Emulator), an open-source integrated simulation platform for wireless vehicular 

communication network that assumed a transmission range of 250m. Hawas, Napeñas, and 

Hamdouch (2009) developed and compared two intervehicular communication (IVC)-based 

algorithms for real time route guidance in urban networks. They tested these algorithms for 

various communication ranges (radii) for the IVC-forward algorithm; namely, 300, 600 and 

900m and concluded that the communication range has a noticeable influence on the frequency 

of knowledge sharing; the higher the communication range, the higher the likelihood of 

exchanging knowledge among the searcher vehicle and the candidate vehicles. Moreover, a 

research report from The United States Department of Transportation on the readiness for 

application of V2V communications revealed that the ego-vehicle receives messages from the 

other vehicles in a curvature of 300m radius, assuming that all vehicles are equipped with V2V 

technology (Harding et al, 2014). Liu et al (2016) proposed a network-coding-assisted 

scheduling algorithm to enable the hybrid of V2V and vehicle-to-infrastructure (V2I) 

communications and exploit their joint effects on providing efficient data services. In the case 

of V2V, the communication radius of the roadside units (RSU) is set to 600m, and the V2V 

communication range is set to 300m. 

Apart from a few studies in the field of transportation engineering, information theory has not 

been extensively applied so far. For instance, Kaza et al. (2005) use the MI concept to identify 

vehicles that frequently cross the border with vehicles that are involved in criminal activity. 

However, most papers that apply the principles of information theory or any other theory of 

machine learning mainly focus on the short-term traffic flow prediction (Vlahogianni et al, 

2007, 2008, 2009, Ryu et al, 2018).  
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To our knowledge, the radius of a conventional vehicle’s area of influence has not been yet 

explored. Additionally, regarding the range of a wireless communication network further 

research needs to be done. Within this context, this study addresses the need to compute the 

range of a vehicular network, not by assuming it as a fixed number, but through the estimation 

of the area of influence of a conventional vehicle based on real time driving data. Specifically, 

we aim to develop a methodology to estimate the area of influence of conventional vehicles 

under different traffic conditions and for various vehicle types based on principles of 

information theory and detailed human driving vehicle trajectory data. The remainder of the 

paper is as follows: the next section presents the methodological approach. Following, the 

implementation specifications are presented and the results are discussed. Finally, the paper 

ends with the conclusions section with a discussion on some future research directions.  

 

2. Methodological Approach 

2.1 Problem Setup 

The term “area of influence” refers to the spatial demarcation of the external environment of 

the ego vehicle. We assume that it is a circle centered at the ego-vehicle and includes all the 

neighboring vehicles, that interact with the sender. It is important to note that the area of 

influence of a conventional vehicle is not identical to the transmission range of an autonomous 

vehicle. The difference eagers to the fact that the latter is bigger than the former, in order to 

ensure the transmission of the message to the affected surrounding vehicles.  

In this research, the area of influence is defined based on conventional vehicles’ trajectory data 

collected in the center of Athens during morning peak hours (pNEUMA dataset) via Unmanned 

Aerial Systems (UAS), the so called “drones” (Barmpounakis et al, 2020). To estimate the area 

of influence, we compute the mutual information (MI) between pairs of vehicles (sender-

receiver), considering their velocities as random variables. This will reveal the identification of 

any effect the speed of the first vehicle might have on the second one and vice versa. By 

computing the mean of the MI that each ego-vehicle shares with its neighboring vehicles for 

different radius values, the critical radius of the influence area can be derived. We analyze the 

results based on the vehicle type and the road density and the goal is to adapt the results to 

future researches focusing on autonomous vehicles.  

 

2.2 Basic Principles of Information Theory  

Entropy or Shannon Entropy, as it called after its founder Claude Shannon (1948), is a measure 

that reveals the amount of uncertainty contained in the outcome of the value of a random 

variable or the result of an experiment. Let X be a random variable with probability distribution 

function p (x). Then, the entropy of the random variable X is defined as: 

                                               𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔𝑏𝑃(𝑥𝑖) 𝑛
𝑖=1                                              (1) 

where b is the base of the algorithm and determines the units in which the information is 

measured. More precisely, base 2 leads to information measured in bits, whereas base e leads 

to information measured in nats. In the present work, we use natural algorithms. 

MI is a measure of independence between random variables, that has singled out due to its 

information theoretic background originating from its close ties to Shannon entropy. Estimating 
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MI is not an easy task when it comes to continuous variables. Two are the most straightforward 

and widespread approaches for computing this measure. The first estimator is based on 

partitioning the supports of X and Y into bins of finite size and is obtained by counting the 

numbers of points into the bins. The MI is then  

                        𝐼(𝑋; 𝑌) ≈  I𝑏𝑖𝑛𝑛𝑒𝑑 (𝑋; 𝑌) =  ∑ 𝑃𝑥𝑦(𝑖, 𝑗)𝑙𝑜𝑔
𝑃𝑥𝑦(𝑖,𝑗)

𝑃𝑥(𝑖)𝑃𝑦(𝑗)𝑖,𝑗                             (2) 

In Eq.2 if 𝑛𝑥(𝑖), 𝑛𝑦(𝑗) 𝑎𝑛𝑑 𝑛(𝑖, 𝑗) the number of points falling into the ith bin of X, jth bin of Y 

and in their intersection respectively, then 𝑃𝑥(𝑖) ≈ 𝑛𝑥(𝑖)/𝑁, 𝑃𝑦(𝑗) ≈ 𝑛𝑦(𝑗)/𝑁, 𝑃𝑥𝑦(𝑖, 𝑗) ≈

𝑛(𝑖, 𝑗)/𝑁. 

The second estimator was proposed by Kraskov (2004), it is considered to be accurate and 

reliable and is the one that we implement in this paper. The method uses the k-nearest-neighbors 

(knn) algorithm and has the following form (Eq. 3): 

                                𝐼(𝑋; 𝑌) = 𝜓(𝑘) −  〈𝜓(𝑛𝑥 + 1) + 𝜓(𝑛𝑦 + 1)〉 + 𝜓(𝛮)                          (3) 

where 

𝜓(𝑘) is the digamma function. 

𝑛𝑥(𝑖) is the number of points 𝑥𝑗 whose distance from 𝑥𝑖 is less than 𝑒(𝑖)/2 (the distance 

from 𝑧𝑖to its kth neighbor), similarly for y. 

 

3. Implementation 

3.1 Data 

The data used for this study are obtained through a first-of-its-kind experiment, named 

pNEUMA, that was conducted in the center of Athens during morning hours. More precisely, 

Unmanned Aerial Systems (UAS) or simply “drones” recorded the road conditions in ten sites 

in order to create a complete urban dataset (Barmpounakis et al, 2020). In the context of this 

study, the analyzed data are collected from a single site, on Αlexandra’s Avenue from 09:30am 

to 10:00am. The dataset includes the id, coordinates, speed, acceleration, deceleration and the 

type of the vehicle for all vehicles of the road monitored for 1229 timepoints of 0.8 seconds 

each. 

In order to measure the independence of two random variables using MI, we need a sufficient 

amount of data. Therefore, we analyze only the vehicles that appeared on the road for at least 

52 timepoints, i.e. 41.6 seconds. As a result, the final dataset consisted of 387 vehicles and had 

the following form (Table 1). 
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Table 1: Dataset. 

 

 

 

The second column of the dataset refers to the vehicle type and takes values from 1 to 6, each 

value presenting a different vehicle type. More precisely, type number 1 stands for the power-

two wheelers (ptws), number 2 for the private passenger cars, number 3 for the taxis, number 4 

for the vans, number 5 for the trucks and number 6 for the buses. When a vehicle appears on 

the examined road section, the coordinates X and Y take values other of zero. The y-y’ axis 

coincides with the axis of the road, whilst x-x’ is the perpendicular axis as seen in Fig. 1.  

 

 

 

Figure 1: Distance between vehicles. 

 

3.2 Defining the neighboring vehicles  

Each vehicle was analyzed for four consecutive time periods, 10.4 seconds each, in order to 

have at least 10 dataset points for the reliable estimation of MI. The first period of each vehicle 

refers to its first 13 dataset points for which the ego-vehicle was on the road, the second period 

refers to the next 13 dataset points etc.  

For each vehicle and each time period, we compute the information that the ego-vehicle shares 

individually with all the vehicles within a specified range of radius R. The number of the 

neighboring vehicles varies depending on the examining radius of the area of influence. In 

particular, 20 different radius values between 10-200m. are analyzed, with a step of 10m. A 

vehicle is considered as a neighbor of the ego-vehicle if the distance Disti,j between them is less 

or equal with the examining range of communication. We denote as Disti,j the Euclidian distance 

between vehicles i and j as following. 

Vehicle 

I.d.

Vehicle 

Type
X coordinate Y coordinate Speed

Longitudi-

nal Acc.

Lateral 

Acc.
Time

63 4.00000 2890133.79511 2040849.54281 30.79690 -0.20700 0.11080 1600.00000

64 2.00000 2890133.78080 2040919.92222 11.34350 -0.17740 -0.02060 1600.00000

65 6.00000 2890128.47145 2040992.11787 0.00000 0.00000 0.00000 1600.00000

66 1.00000 2890129.73483 2040997.85672 5.02250 -0.34840 -0.00060 1600.00000

67 5.00000 2890129.93406 2041021.98358 17.83100 0.01960 1.77190 1600.00000
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                                              𝐷𝑖𝑠𝑡𝑖,𝑗 = √(𝑥𝑗 − 𝑥𝑖)
2

+  (𝑦𝑗 − 𝑦𝑖)
2
                                          (4) 

In Eq.4, x and y refer to the coordinates of each vehicle, which are considered to relate to their 

center (Fig.1). As critical radius of the area of influence of each vehicle for the under-

investigation time period is considered the one for which the average MI of the ego-vehicle 

with its neighbors reaches its minimum value. 

The results are further analyzed based on the vehicle type and the road density as shown below.  

 

3.3 Results 

The following figures display the results after the analysis of each vehicle. (Fig. 2, 3, 4). Figure 

2 demonstrates the neighbors of a specific vehicle (car 62) for its first time period. 

 

 

 

Figure 2: Neighbors line plot for car 62 at first time period. 

 

At the top of Figure 2 the ids of the neighbors are demonstrated. We observe that by increasing 

the radius the list of neighbors is gradually expanded to include the farthest vehicles as well. 

The MI between the subject vehicle and its neighbor remains constant throughout the whole 

period. It can also be observed that there are neighbors’ ids that do not correspond to any line 

in the plot. In this case, despite the fact that the neighbor is within the range, the information 

shared with the ego-vehicle is zero.  

The next graph shows briefly the range of MI values between car 62 and its neighbors for every 

examining radius in its first period. 
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Figure 3: Neighbors box plot for car 62 at first time period. 

In figure 3 the black dots are the MI values of the ego-vehicle with its neighbors while the the 

dash symbolizes the median of the MI for each radius. Compared to Figure 2, the neighbors, 

that share zero information with car 62, are depicted. Figure 4 displays the average MI between 

the ego-vehicle and its neighbors with respect to the radius for a specific time period.  

 

 

 

Figure 4: Mean MI for every radius value for car 62,1st period. 

 

In Figure 4 the asterisk symbolizes the minimum value of the average MI between car 62 and 

its neighbors and therefore the critical radius of the influence area is equal to 170m for car 62 

for its first period. 
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It is worth mentioning that in some cases, for low radii the ego-vehicle did not show a stable 

neighbor during the analyzed period. For this reason, in such cases the lowest value for which 

the MI is plotted is above 10 meters as shown in figure 4. The upper value of MI was in rare 

cases higher than 1.5. 

Thus, the results with respect to the vehicle type and road density are presented in a final table 

part of which is displayed in Table 2. 

 

Table 2: Part of the analysis results. 

 

Time  

Period 

Vehicle 

I.d.  

Vehicle 

Type 

Road Density 

(v/km) 

Influence  

area (m) 

1 27 1 60 10 

1 44 2 15 150 

1 45 2 10 30 

1 48 2 20 50 

1 54 2 20 200 

1 62 2 10 170 

1 63 2 10 160 

1 64 2 70 80 

1 65 5 60 30 

1 66 1 60 30 

1 84 2 10 140 

1 87 2 5 130 

1 88 2 10 180 

1 92 1 25 200 

1 99 2 10 50 

1 100 2 25 200 

1 103 2 25 170 

. . . . . 

. . . . . 

. . . . . 

 

 

Extending the findings of Table 1, Figures 5 and 6 illustrate how the density of the road section 

influences the range of communication for each vehicle type. We also present the logarithmic 

or exponential equations that best describe the results accompanied by the corresponding 

coefficient of determination R2 (Fig. 5-7). The coefficient R2 takes values from 0 to 1. Values 

close to 1 indicate a perfect fit of the model to the data. As seen in Fig. 5-7, private passenger 

cars have a coefficient of determination close to 0.70, taxis and power-two wheelers present R2 

of almost 0.45 and 0.50 respectively while trucks and buses have low coefficients, close to zero. 

The vans also show a satisfactory coefficient of determination of 0.65. In addition, the 

logarithmic lines of cars and taxis are almost identical to each other, as is their cumulative 

logarithm with that of all vehicles. The resulting equation of private passenger cars when 
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studied along with taxis shows R2 close to 0.65 and the resulting equation of all vehicle types, 

when studied as whole, describes the results in the 0.70 of the cases. Lastly, the exponential 

trend line of vans and trucks cumulatively has a coefficient of determination close to 0.45. 

 

 

 

Figure 5: Logarithmic equations of power-two wheelers, cars and taxis. 
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Figure 6: Logarithmic and exponential equations of trucks, buses and vans. 

 

 

 

Figure 7: Logarithmic and exponential equations of vehicles’ sets. 

 

Concerning the powered-two wheelers, the private passenger cars, the taxis and the vans 

respectively, there is a downward trend, meaning that a potential decrease of the critical radius 

of the influence area follows a concurrent increase of the road density. On the other hand, for 

the trucks and buses respectively, the pattern is not that clear. 

By visualizing the impact of the road’s density on the dimension of the critical area of influence 

we notice that in some occasions, while the density is high, the radius of the influence area is 

equally large, reaching even 200 meters. This means that the ego-vehicle shared almost the 

same speed with many neighboring vehicles on the road network and as a result no minimum 

value was detected. Such cases usually appear in an analysis using only speed as a variable, as 

two vehicles can have similar speeds regardless of their interdependence. Besides this 

randomness, though, the initial limitation of the data may also be an important factor. Some 

vehicles that appeared on the road network and affected the ego-vehicle, may not have been 

analyzed due to their time-limited presence. 

Regarding the power-two wheelers, the private passenger cars and the taxis, road density is an 

important determinant for the reliable estimation of the area of influence of the vehicles; the 

lower the density, the larger the radius of influence of the vehicle and vice versa. In cases of 

traffic congestion, the driver usually tends to observe the vehicles closest to him. On the other 

hand, the influence area of trucks and busses seems to be slightly related to the prevailing road 

density conditions. This conclusion needs further investigation, as it not clear whether it occurs 

due to their particular way of moving in the network or due to the small number of similar 
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vehicle type studied. Regarding the vans the results indicated that, at least in terms of road 

density, they develop behavior similar to that of the private passenger cars. 

 

4. Conclusions 

In this work, we estimated the area of influence of different vehicle types by computing the MI 

between pairs of vehicles. Using the speed as the random variable we concluded that it is 

capable of providing reliable results concerning the estimation of the influence area of a vehicle. 

By further analyzing the results we tried to develop a relationship between the area of influence 

of a vehicle, the vehicle type and the road density and observed that road density is an important 

factor in determining the radius of influence when all vehicle types are studied as a whole. 

However, by studying each type separately, buses and trucks seem to be slightly depended on 

the density of the network. In addition, we proposed the logarithmic and exponential equations 

and noted that they better describe the results of the power-two wheelers, the private passenger 

cars and the vans. The high percentage of the coefficient of determination of private passenger 

cars along with the taxis leads us to the conclusion that the results presented in this paper are 

reliable for all vehicle types except for the trucks and the buses.  

Future work could focus on evaluating the use of different traffic parameters as metrics for the 

estimation of the critical area. The results presented in this paper can be also analyzed based on 

other factors, such as the driver’s behavior and contrast the range of influence of aggressive 

drivers compared to conservative ones. Finally, the proposed approach can be used to produce 

control strategies for both manually driven and autonomous vehicles and assess their impacts 

to traffic and safety at different network scales in a simulation environment.  
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