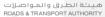
### **Driver Perception-Reaction Times in Level 3 Automated Vehicles**


### Dr. Audrey Demicoli Research for the Doctoral Degree

Main Supervisor: Prof. George Yannis, National Technical University of Athens Co-Supervisor: Dr. Odette Lewis, Senior Lecturer University of Malta

The research work is partially funded by the Endeavour Scholarship Scheme (Malta). Scholarships are part-financed by the European Union - European Social Fund (ESF) - Operational Programme II – Cohesion Policy 2014-2020: 'Investing in human capital to create more opportunities and promote the well-being of society'.

18<sup>th</sup> IRF World Meeting & Exhibition Dubai | November 7-10, 2021







### **Basis for Scope of Research**

| Research Topic                                                                         | Results of Research                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effect of alert strategy & type on driver distraction for sudden braking               | Resulted that participants responded similarly to haptic and auditory alerts & alert strategy adopted was important.                                                                                                        |
| Adaptation to vehicle automation                                                       | Research showed that trust increases with use but acceptance does not increase.                                                                                                                                             |
| Tendency to take risks                                                                 | Concluded that adaptation to automation depends on driver education, experience and personality.                                                                                                                            |
| Automation & secondary tasks                                                           | Concluded that increased automation results in an increase in secondary tasks.                                                                                                                                              |
| Different studies result in different<br>PRT and which variables influence<br>PRT      | Due to different definitions used for PRT and BRT. Resulted that age, alcohol consumption and whether the stimulus was expected or unexpected effected PRT.                                                                 |
| Establish driver response times in actual driving scenarios without vehicle automation | Participants not aware of experiment. Concluded that RT depended on complexity of traffic scenario, level of urgency, speed of the vehicles when the hazard alert starts and PRT in normal vehicle expected to exceed 2.5s. |
|                                                                                        |                                                                                                                                                                                                                             |

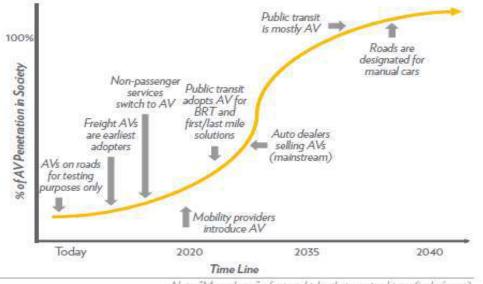
**Design Guidelines for Different Countries** 



هيئة الطرق والمواصلات ROADS & TRANSPORT AUTHORITY

# **Research Questions**

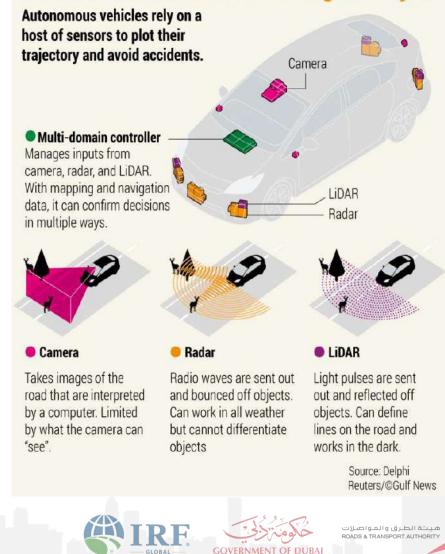
- 1. Which type or combination of driver alert systems are most effective according to driver characteristics criteria?
- 2. Do driving experience, age, gender and disability affect response times?
- 3. Does the type of secondary tasks affect driver response times differently?
- 4. How will driver perception-response time affect standard design guidelines for Stopping Sight Distances?


# Main Hypothesis

Driver Response Time in a Level 3 Automated Vehicle will necessitate updates of the existing design guidelines for Stopping Sight Distances



## Literature Review: The Automated Vehicles


- Future of AVs
- Development of AVs
- Timelines
- The Driving Process



Note: "Manual cars" refer to vehicles that require drivers (today's cars).

### 18<sup>th</sup> IRF World Meeting & Exhibition Dubai | November 7-10, 2021

### A host of sensors are self-driving cars' eyes



# Literature Review: The Driving Process

### Driving Process = Driving Strategy + Driving Tactics

Criteria which affect Perception-Reaction Time for Levels 1 and 2 vehicles:

**Country of Origin**: PRT affected by country of origin and driver awareness because it is related to the driver, the vehicle and the roadside scenario;

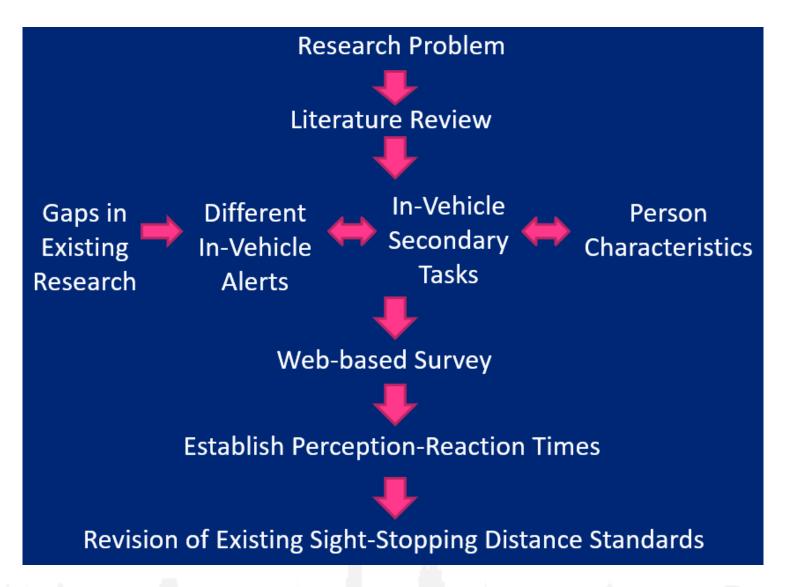
Gender: Different research yielded different results;

Age: PRT increases with age;

**Driving Experience**: Correlation with PRT is unclear;

**Perception Delay/Psychological Refractory Period**: In Level 3 vehicles this delay includes shifting from automated to driving mode;

**Driver distraction**: Competes with driver attention and causes delays in recognition and processing of information. Can be visual, auditory, biomechanical, cognitive or a combination of these;


**Alerts**: Haptic, auditory, visual or a combination of such. Auditory RT is less than visual RT. Multisensory RT less than unisensory RT;

**Disabilities**: Musculoskeletal, Neurological and Cognitive/Sensory increase PRT because they affect perception, processing of information and reduced motor capabilities.





### **Research Design and Methodology: Schematic**



18<sup>th</sup> IRF World Meeting & Exhibition Dubai | November 7-10, 2021



هيئة الطرق والمواصلات ROADS & TRANSPORT AUTHORITY

### **Research Design and Methodology: Main Points**

- a. Based on gaps in existing research and scope of research
- b. Identified secondary tasks use of mobile phone and watching a video
- c. Stratified sampling technique used random sampling which divides population into strata drivers/non-drivers. Disproportional sampling to applied to strata and subgroups. Used statistical Hypothesis Testing to determine level of significance of sample data.
- d. Survey using C# and Java and designed in two parts 1<sup>st</sup> part collection of demographic data, 2<sup>nd</sup> part interactive survey.
  Survey link: <u>http://survey.horizon2000computers.com/</u>



### Research Design and Methodology: Web-Based Survey

**Demographic Questions** 

### Welcome!

### The Researcher

This research is being carried out by Peril Audres Testaferreta de Noto as part of her studies at the University of Malta reading for her doctorate degree. She is a qualified Traffic and Transportation Engineer and here worked in this sector for the past nineteen y

### The Research

The scope of the research is to establish the Perception-Reaction Time of a licensed vehicle driver in a Level 3 Automated Vehicle where the driver is allowed to perform a secondary task, other than driving, and is expected to engage in driving when alarted by the vehicle.

A Level 3 Automated Vehicle operates in drivertees mode however, in the case in the case of a roadside circumstance which cannot be managed by the vehicle, the driver is alerted to engage in the driving task

The Perception-Reaction Time is measured from the moment of alert to the moment that the driver reacts.

### The Process

The survey process is fully computer penersted and the periodpant is to fill in the relative screens according to the instructions contained therein and react accordingly. Kindly take the survey ONLY ONCE as multiple tries are a source of arror in the data.

### Risk

This participation poses very little to no risk at all of the data subject being identified because carticipation is anorymous (no names, sumames, address or Identification document are required). Data will be processed separately from computer generated source identifiers which will not be made public and may be accessed only to tutors for vertication purposes.

consent for the data to be processed within the limits above declarad.



Consent

By your participation in this survey you are confirming that you have read the above and gave your



Part 2

### Follow instruction when alert is given.



18th IRF World Meeting & Exhibition Dubai | November 7-10, 2021

### Part 1: Demographic Information

### Instructions

Part 1 of the sarvey collects demographic information regarding the participant. Such information is important because it will show how participant-specific characteristics effect Perception-Reactory Times For questions regarding AGE OF DRIVER and YEARS OF DRIVING EXPERIENCE kindly reply by entering the number related to yourself as the participant

Fir all other questions kindly reply using the drop-down meau.



| Choose                      |   |
|-----------------------------|---|
| Age                         |   |
| Are you a vehicle driver?   |   |
| Choose                      |   |
| Years of Driving Experience |   |
| Country of Origin           |   |
| Choose                      | • |

### Choose ... . Continue

### Part 2: DRIVING SIMULATION

### Instructions

Part2 of this survey is a simulation of a striver in a Level 1 Automated Vehicle

The Shit aremain is a new entere the driver is not engaged in a supportery law

The second scenario is a case where the driver is watching a video as a secondary task in the vehicle. The third scenario is a tase where the driver is replying to an SMS as a secondary task. The participant is kindy requested to interact with the survey by replying to the SMS. Replica to the SMS are to be typed the text bex found at the bottom of the SMS pop-up box.

For each of these scienarios the participant is to click on the RED BOX which apparent on the screan and which simulates an aster. In a Level 2 Automated Vehicle for the driver to engage in the driving task.



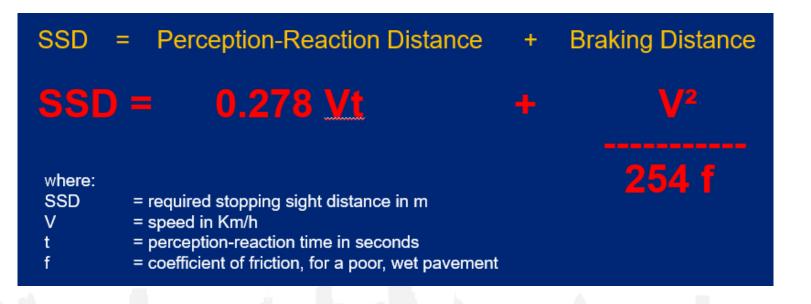


### Part 2

### Follow instruction when alert is given.












### **Research Design and Methodology**

- 1. SPSS software was used to analyse the data;
- 2. Statistical tests used: Binomial Test, Alternative Hypothesis, Tests of Normality and the Kruskal Wallis Test, Gamma Regression Model;
- The results of the survey gave the Anticipated PRT and these values were multiplied by the 1.35 Correction Factor, established by Johansson and Rumar (1971), to give the Unexpected PRT. The 85<sup>th</sup>% values of the PRT was subsequently calculated for each sib-group using z-score;
- 4. SSD (distance travelled during the PRT period) was calculated for different design speeds using:





هيئة الطرق والمواصلات ROADS & TRANSPORT AUTHORITY

### **Results and Discussion**

### Results of the Person-Specific Characteristics in relation to PRT as follows:

|            |            | Sample |      |           |         |              |                            | Sample    |              |           | _       |                   |                            | Sample     |              |           |   |
|------------|------------|--------|------|-----------|---------|--------------|----------------------------|-----------|--------------|-----------|---------|-------------------|----------------------------|------------|--------------|-----------|---|
|            | Gender     | size   | Mean | Std. Dev. | P-value |              | Driving experience         | size      | Mean         | Std. Dev. | P-value |                   | Age                        | size       | Mean         | Std. Dev. | F |
| P2Duration |            | 234    | 3.04 | 1.105     | 0.879   | P2Duration   | 0-10 years                 | 126       | 2.76         | .917      | 0.000   | P2Duration        | 18-30 years                | 123        | 2.75         | .953      |   |
|            | Female     | 216    | 3.06 | 1.097     |         |              | 11-20 years                | 102       | 2.87         | .944      |         |                   | 31-40 years                | 102        | 2.82         | .852      | 1 |
| P3Duration |            | 248    | 2.61 | 0.872     | 0.043   |              | 21-30 years                | 112       | 3.00         | .901      |         |                   | 41-50 years                | 116        | 3.08         | 1.020     | 1 |
|            | Female     | 237    | 2.78 | 0.935     |         |              | 31-40 years                | 63        | 3.30         | 1.231     |         |                   | 51-60 years                | 76         | 3.41         | 1.237     | 1 |
| P4Duration |            | 243    | 2.57 | 1.000     | 0.012   |              | 41 years or more           | 36        | 3.98         | 1.441     |         |                   | 61 years or more           | 33         | 3.89         | 1.538     | 1 |
|            | Female     | 237    | 2.80 | 0.946     |         | P3Duration   | 0-10 years                 | 135       | 2.51         | 1.019     | 0.000   | P3Duration        | 18-30 years                | 133        | 2.51         | .985      | - |
| P5Duration |            | 255    | 2.41 | 0.915     | 0.101   |              | 11-20 years                | 110       | 2.66         | .867      |         | PoDuration        |                            | 106        | 2.51         |           | - |
|            | Female     | 238    | 2.55 | 0.957     |         |              | 21-30 years                | 119       | 2.67         | .713      |         |                   | 31-40 years<br>41-50 years | 106        | 2.55         |           | - |
| P6Duration |            | 240    | 2.81 | 1.153     | 0.623   |              | 31-40 years                | 71        | 2.89         | 1.002     |         |                   | 51-60 years                | 84         | 2.71         |           |   |
|            | Female     | 219    | 2.87 | 1.198     |         |              | 41 years or more           | 38        | 3.20         | .795      |         |                   |                            | 34         | 3.22         |           | - |
| P7Duration |            | 247    | 3.11 | 1.156     | 0.901   | P4Duration   | 0-10 years                 | 132       | 2.50         | 1.008     | 0.024   |                   | 61 years or more           | - 34       | 3.22         | .990      |   |
|            | Female     | 226    | 3.12 | 1.319     |         |              | 11-20 years                | 110       | 2.61         | 1.006     |         | P4Duration        | 18-30 years                | 131        | 2.40         | .937      |   |
|            |            |        |      |           |         |              | 21-30 years                | 122       | 2.80         | .953      |         |                   | 31-40 years                | 109        | 2.69         | 1.047     |   |
|            |            |        |      |           |         |              | 31-40 years                | 65        | 2.82         | .884      |         |                   | 41-50 years                | 130        | 2.88         | 1.041     |   |
|            |            | Sample |      |           |         |              | 41 years or more           | 38        | 2.91         | .916      |         |                   | 51-60 years                | 81         | 2.75         |           | - |
|            | Disability | size   | Mean | Std. Dev. | P-value | P5Duration   | 0-10 years                 | 136       | 2.29         | 1.004     | 0.010   |                   | 61 years or more           | 29         | 2.89         | .784      |   |
| P2Duration |            | 5      | 4.05 | 1.909     | 0.040   | 1 obditation | 11-20 years                | 108       | 2.46         | .956      | 0.010   | P5Duration        | 18-30 years                | 135        | 2.28         | .996      | - |
|            | No         | 445    | 3.04 | 1.086     |         |              | 21-30 years                | 125       | 2.40         | .864      |         | i ob di di di off | 31-40 years                | 107        | 2.40         |           |   |
| P3Duration |            | 6      | 2.93 | 1.016     | 0.531   |              | 31-40 years                | 75        | 2.57         | .004      |         |                   | 41-50 years                | 133        | 2.60         |           | - |
|            | No         | 479    | 2.69 | .905      |         |              | -                          | 36        | 2.74         | .914      |         |                   | 51-60 years                | 85         | 2.64         |           | 1 |
| P4Duration |            | 5      | 3.51 | 1.207     | 0.058   | DCDuration   | 41 years or more           |           |              |           | 0.001   |                   | 61 years or more           | 33         | 2.70         |           | 1 |
|            | No         | 475    | 2.67 | .974      |         | P6Duration   | 0-10 years                 | 129       | 2.53         | .955      | 0.001   |                   | -                          |            |              |           |   |
| P5Duration |            | 6      | 2.93 | 1.016     | 0.243   |              | 11-20 years                | 107       | 2.78         | 1.079     |         | P6Duration        | 18-30 years                | 130        | 2.51         |           |   |
|            | No         | 487    | 2.48 | .936      |         |              | 21-30 years                | 114       | 3.01         | 1.2450    |         |                   | 31-40 years                | 105        | 2.74         |           | - |
| P6Duration |            | 6      | 2.70 | .854      | 0.772   |              | 31-40 years                | 65        | 3.01         | 1.302     |         |                   | 41-50 years                | 120        | 2.95         |           | _ |
|            | No         | 453    | 2.84 | 1.178     |         |              | 41 years or more           | 33        | 3.44         | 1.475     |         |                   | 51-60 years                | 73         | 3.00         |           | - |
| P7Duration |            | 6      | 3.60 | 1.635     | 0.335   | P7Duration   | 0-10 years                 | 132       | 3.23         | 1.471     | 0.016   |                   | 61 years or more           | 31         | 3.75         | 1.425     |   |
|            | No         | 467    | 3.11 | 1.230     |         |              | 11-20 years                | 106       | 2.85         | 1.059     |         | P7Duration        | 18-30 years                | 131        | 3.16         | 1.399     | - |
|            |            |        |      |           |         |              |                            |           |              | 4 0 0 0   |         |                   |                            |            | 5.10         |           |   |
|            |            |        |      |           |         |              | 21-30 years                | 115       | 3.08         | 1.020     |         |                   | 31-40 years                | 107        | 2.96         | 1.194     |   |
|            |            |        |      |           |         |              | 21-30 years<br>31-40 years | 115<br>74 | 3.08<br>3.25 | 1.020     |         |                   | 31-40 years<br>41-50 years | 107<br>124 | 2.96<br>3.04 |           |   |

41 years or more

33

3.48

1.393





P-value 0.000

0.000

0.001

0.009

0.000

0.172



3.39

3.05

1.425

.777

80

31

51-60 years

**GOVERNMENT OF DUBAI** 

61 years or more

### **Results and Discussion**

# Results of the Gamma Regression Model showing Significant Predictors as follows:

| Scenario | Predictors for Average Perception-Reaction Time |                 |                 |                 |                 |  |  |  |  |
|----------|-------------------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|          | Age                                             | Gender          | Driving License | Driving         | Country of      |  |  |  |  |
|          |                                                 |                 |                 | Experience      | residence       |  |  |  |  |
| P2       | Not significant                                 | Not significant | Not significant | <10yrs PRT <    | Maltese PRT >   |  |  |  |  |
|          |                                                 |                 |                 | 41+yrs          | other EU        |  |  |  |  |
| P3       | <30yrs PRT <                                    | Males PRT <     | Not significant | Not significant | Not significant |  |  |  |  |
|          | 61+yrs                                          | females         |                 |                 |                 |  |  |  |  |
| P4       | <30yrs PRT                                      | Males PRT <     | Licensed PRT    | Not significant | Not significant |  |  |  |  |
|          | <61+yrs                                         | females         | < non-licensed  |                 |                 |  |  |  |  |
| P5       | Not significant                                 | Males PRT <     | Not significant | <10yrs PRT <    | Not significant |  |  |  |  |
|          |                                                 | females         |                 | 41+yrs          | -               |  |  |  |  |
| P6       | <30yrs PRT                                      | Not significant | Not significant | Not significant | Not significant |  |  |  |  |
|          | <61+yrs                                         |                 |                 |                 | -               |  |  |  |  |
| P7       | Not significant                                 | Not significant | Licensed PRT    | <10yrs PRT <    | Maltese PRT <   |  |  |  |  |
|          |                                                 | _               | > non-licensed  | 41+yrs          | other EU        |  |  |  |  |





### **Results and Discussion**

### Results of the PRT obtained for the different scenarios are as follows:

| Driving Scenario | 85 <sup>th</sup> Percentile<br>Unexpected Perception-<br>Reaction Time | Type of Alert     | Type of<br>Distraction                                   |  |  |
|------------------|------------------------------------------------------------------------|-------------------|----------------------------------------------------------|--|--|
| P2               | 4.19                                                                   | Visual            | No distraction.                                          |  |  |
| P3               | 3.63                                                                   | Visual & Auditory | Control                                                  |  |  |
| P4               | 3.69                                                                   | Visual            | Watching a video.                                        |  |  |
| P5               | 3.45                                                                   | Visual & Auditory | Cognitive, visual &<br>auditory.                         |  |  |
| P6               | 4.06                                                                   | Visual            | Typing & Reading                                         |  |  |
| P7               | 4.40                                                                   | Visual & Auditory | a Text Message.<br>Cognitive, visual &<br>biomechanical. |  |  |

PRT suggested by this research is the average of the P6 and P7 scenarios being **4.23 seconds**.





### Conclusion

### The summary of the comparison of the PRT and SSD values obtained from this research with values of CEDR. AASHTO. DMRB. AUSTROADS and RAA are as follows:

| <b>UIUE</b>             |          |                     |                     | 011107             |                   |                        | 410 40           |  |  |  |
|-------------------------|----------|---------------------|---------------------|--------------------|-------------------|------------------------|------------------|--|--|--|
| Criteria                | This     | CEDR <sup>1,6</sup> | AASHTO <sup>2</sup> | NCHRP <sup>2</sup> | DMRB <sup>3</sup> | Austroads <sup>4</sup> | RAA <sup>5</sup> |  |  |  |
|                         | research |                     |                     |                    |                   |                        |                  |  |  |  |
| PARAMETERS              |          |                     |                     |                    |                   |                        |                  |  |  |  |
| Coefficient of          | 0.377    | 0.377               | from 0.4            | -                  | 0.25              | 0.36                   | from             |  |  |  |
| Friction                |          |                     | for                 |                    |                   |                        | 0.35 for         |  |  |  |
|                         |          |                     | 30km/h to           |                    |                   |                        | 60km/h           |  |  |  |
|                         |          |                     | 0.28 for            |                    |                   |                        | to 0.15          |  |  |  |
|                         |          |                     | 120km/h             |                    |                   |                        | for              |  |  |  |
|                         |          |                     |                     |                    |                   |                        | 120km/h          |  |  |  |
| Deceleration            | -        | -                   | -                   | 3.4                | -                 | -                      |                  |  |  |  |
| Rate(m/s <sup>2</sup> ) |          |                     |                     |                    |                   |                        |                  |  |  |  |
| Perception-             | 4.23     | 2.0                 | 2.5                 | 2.5                | 2.0               | 2.0                    | 2.0              |  |  |  |
| Reaction                |          |                     |                     |                    |                   |                        |                  |  |  |  |
| Time(sec)               |          |                     |                     |                    |                   |                        |                  |  |  |  |
|                         |          |                     |                     |                    |                   |                        |                  |  |  |  |
| DESIGN                  |          |                     | Stoppi              | ng Sight Di        | stance            |                        |                  |  |  |  |
| SPEED                   |          |                     |                     |                    |                   |                        |                  |  |  |  |
| 30                      | 45       | 26                  | 29.6                | 31.0               | 31                | 27                     | -                |  |  |  |
| 40                      | 64       | 39                  | 44.4                | 45.9               | 47                | 40                     | -                |  |  |  |
| 50                      | 85       | 54                  | 62.8                | 63.1               | 70                | 55                     | -                |  |  |  |
| 60                      | 108      | 71                  | 84.6                | 82.5               | 90                | 73                     | 65               |  |  |  |
| 70                      | 134      | 90                  | 110.8               | 104.2              | 120               | 92                     | 85               |  |  |  |
| 80                      | 161      | 111                 | 139.4               | 128.2              | 145               | 114                    | 110              |  |  |  |
| 90                      | 191      | 135                 | 168.7               | 154.4              | 178               | 139                    | 140              |  |  |  |
| 100                     | 222      | 160                 | 205.0               | 182.9              | 215               | 165                    | 170              |  |  |  |
| 110                     | 256      | 188                 | 246.4               | 213.7              | 252               | 193                    | 210              |  |  |  |
| 120                     | 291      | 217                 | 285.6               | 246.7              | 295               | 224                    | 255              |  |  |  |
|                         |          |                     | NA 1.C              |                    | 1.0.1             | (0000)3 5              |                  |  |  |  |

Sources: Weber et al. (2016)<sup>1</sup>, Design Manual for Roads and Bridges (2002)<sup>3</sup>, Fambro et al (1997)<sup>2</sup>, Fanning et al (2016)<sup>4</sup>, Harwood et al (1998)<sup>5</sup>, Petegem et al (2014)<sup>6</sup>.





### The Results and the Research Questions

1. Which type or combination of driver alert systems are most effective according to driver characteristics criteria?

Multi-sensory driver alert systems are the most effective and reduce gender difference.

- 2. Do driving experience, age, gender and disability affect response times? Driving Experience and Age complement each other and either one or the other is a significant predictor in each scenario. Younger age group have shorter PRT.
- Does the type of secondary tasks affect driver response times differently?
  When the nature of the secondary task exceeds the cognitive capacity of the driver, the PRT is greatly impaired reading and writing an sms.
- 4. How will driver perception-response time affect standard design guidelines for Stopping Sight Distances? The PRT from this research exceeds the 2 and 2.5 seconds established by different specifications worldwide and thus resulting in longer SSDs.



هيئة الطرق والمواصلات OADS & TRANSPORT AUTHORITY