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ABSTRACT  1 

Connected autonomous vehicles (CAVs) are expected to gradually penetrate urban traffic and 2 

significantly affect traffic operations in a microscopic and macroscopic level. In this work, we 3 

aim to estimate the Passenger Car Unit (PCU) value of a CAV under different market penetration 4 

rate scenarios and further quantify its relationship between road geometry and control (road type, 5 

control type etc.) using microscopic simulation. The PCU value is estimated as the capacity 6 

change observed in the (network and link) Macroscopic Fundamental Diagram (MFD), when 7 

different mixtures of vehicle technologies may exist on the road network. For the purpose of this 8 

work, eleven future mobility scenarios are executed in the Aimsun Next mobility modeling 9 

software and the resulting PCU values are estimated. Classical statistical and machine learning 10 

regression models are further developed to identify the factors that may affect the estimated PCU 11 

values. Findings show that, in a network level, there exists a polynomial relationship between 12 

CAVs’ PCU and their penetration rate in the traffic mix. In a link level, the CAV PCU value is 13 

found to be highly affected by the observed lane flow, the section length, the control type, the 14 

road type, the number of lanes, the number of public transport lines of the road segment, as well 15 

as the market penetration rate of CAVs. The paper ends with a discussion on the implications of 16 

the results for the macroscopic modeling and the testing of CAV related management policies. 17 

 18 

Keywords:  Connected Autonomous Vehicles (CAVs), Passenger Car Unit (PCU), Macroscopic 19 

Fundamental Diagram (MFD), urban traffic, microscopic simulation, random forest  20 
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INTRODUCTION 1 

According to navigation and mapping company TomTom (1), drivers in Athens spend 2 

37% more time on the road due to increased traffic congestion. Regarding road safety, the 3 

National Highway Traffic Safety Administration – NHTSA (2) estimated that 94% of accidents 4 

are caused by human error. In addition, 90% of the harmful air pollutants come from 25% of cars 5 

(3). Connected Autonomous Vehicles (CAVs), given automation that is said to eliminate human 6 

error and connectivity increasing user/vehicle perception about other users and the system 7 

conditions, can be considered a promising solution towards increasing road safety, reducing 8 

traffic congestion and environmental pollution (4, 5). 9 

But along with the promise of these new vehicle technologies comes the perils. Although, 10 

from the early stages of research on CAVs, researchers have suggested that autonomous vehicles 11 

are expected to improve traffic flow by increasing network capacity (6–8) and hence the 12 

penetration of such technologies is, nowadays, expected to be gradual. Until their full 13 

dominance, legacy and CAVs will coexist on the roads creating inhomogenous traffic conditions. 14 

This may cause an explosive mixture of interactions which could lead to critical roadway traffic 15 

and safety conditions. Especially in the early stages of implementation, CAVs impacts on traffic 16 

conditions and capacity should be taken into serious consideration. There exist studies with 17 

evidence that – at an early stage – there will be detrimental effects to network capacity and 18 

overall traffic performance (9, 10). 19 

In the new traffic landscape, estimating the Passenger Car Unit (PCU) for CAVs is of 20 

outmost importance for meaningful capacity analysis, signal design, and traffic management. 21 

Various research has been conducted concerning the estimation of PCU of conventional vehicles 22 

and different methods have been developed. Some of the methods are based on speed modeling 23 

(11–14), on headway (14–17), on space occupancy (18–20) as well as on time occupancy (17–24 

21). The research landscape regarding PCU values in urban road networks is fragmented; PCU 25 

have been considered to take a static value or values in relation to traffic characteristics, road 26 

geometrics and other factors (22). 27 

Literature on autonomous or/and connected vehicles and PCU values have been mainly 28 

focused on highways (23–27) and signalized intersections (28–33). The research on possible 29 

PCU values for CAVs in urban road networks where a greater variability of geometry and control 30 

conditions may arise is still at its infancy.  31 

We extend past research by proposing a method to estimate the PCU factor of CAVs in 32 

urban road networks in relation to the market penetration rate and other geometry and control 33 

factors. The approach is based on quantifying the effect of CAVs’ penetration rate to changes in 34 

capacity at a network – and link – level as depicted in the Macroscopic Fundamental Diagram 35 

(MFD). The analyses are based on simulated experiments of various future mobility scenarios. 36 

The proposed methodology and outcomes enable the detailed estimation of CAV impacts on 37 

traffic in a variety of traffic conditions and road infrastructure.  38 

The paper is organized as follows: the next section describes the methodological 39 

approach, in which the PCU factor estimation approach and MFD method are presented. 40 

Following, we present the simulation framework and its parameterization and discuss the 41 

network-level impacts, provided from the MFD approach, as well as link-level impacts. Next, we 42 

present the results from the development and training of the machine learning model to identify 43 

the factors that may affect the link-level PCU values. The paper ends with a summary of specific 44 

research outcomes, as well as some concluding remarks. 45 

 46 
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METHODOLOGICAL APPROACH 1 

Passenger Car Unit (PCU) measures the impact of a transport mode (passenger cars, 2 

heavy vehicles, buses, etc.), as a function of vehicle dimensions and operating capabilities, on 3 

the traffic flow efficiency compared to a standard unit of passenger car. Hence, a PCU factor of 1 4 

is used as the unit for conventional cars. In the case of AVs, as field data are not yet available, the 5 

estimation of the PCU values can only be based on simulation output data (34, 35). Depending 6 

on the percentage of AVs in the traffic demand, different capacity levels are expected to occur, 7 

hence, the PCU values will vary accordingly. One approach to derive the equivalence in PCU 8 

factors is to calculate the proportion of capacity reached by vehicles of different types (e.g., 9 

buses, trucks, AVs) with respect to Conventional Vehicles (CV) (reference vehicles) as follows 10 

(Equation 1): 11 

 12 

PCUAV = PCUCV

 capacity
CV

capacity
AV

  (1) 13 

 14 

where PCUΑV is the PCU factor for autonomous vehicles, PCUCV is the PCU factor for 15 

conventional vehicles and is assumed to be equal to 1, capacity
CV

 is the derived capacity for 16 

conventional vehicles and capacity
AV

 is the derived capacity for autonomous vehicles. In this 17 

study the same PCU value for conventional vehicles is considered for all the vehicle types (e.g., 18 

private cars, trucks, buses). Nevertheless, the PCU estimation can be refined to consider different 19 

PCU values for conventional vehicles depending on the vehicle type. 20 

Capacity change is derived from the network’s Macroscopic Fundamental Diagram 21 

(MFD). Experiments and simulations performed by Daganzo and Geroliminis (36) showed that 22 

in many cases the average volume and the average density of a road network are related with a 23 

reproducible curve, known as the Macroscopic Fundamental Diagram (MFD). The theory behind 24 

this diagram allows a conversion of prediction models from a microscopic level in macroscopic 25 

control and monitoring, which is of utmost significance, since microscopic data are rarely used 26 

for large networks (37). The MFD is a model that depicts the road’s network traffic state and 27 

basically represents the relationship between traffic demand and traffic supply in the road 28 

network. Through this method, it is possible to estimate the traffic conditions of the network and 29 

thus, determine its level of service. In addition, the MFD theory is appropriate for predicting 30 

traffic-related variables, as in a research conducted by Gao et al. (38), in which the predicted 31 

speed was estimeted using the MFD model. 32 

The concept of the urban road network MFD is utilised in order to derive the network 33 

capacities for different simulation scenarios with various AV penetration rates. One approach to 34 

represent the network’s MFD considers the total number of vehicles passing through the network 35 

(i.e. that have reached their destination) versus the total number of vehicles inside the network 36 

(which equals the density divided by the sum of all link lengths of the road network), within a 37 

specified interval. Alternatively, the total network production (veh × distance travelled per unit 38 

time) and accumulation (veh) can be calculated from loop detectors on links (39, 40). The first 39 

approach for obtaining the network’s MFD is preferred in homogeneously congested networks, 40 

while the second can be more accurate for the estimation of the average network speed and 41 

density in less homogeneously congested networks. For this analysis, the first approach is 42 

adopted as the values for the macroscopic variables to define the MFD can be derived directly 43 

from the simulation.  44 

The above methodology may have far reaching managerial implications in relation to the 45 
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rate of penetration of CAVs in road networks. Macroscopic route choice and assignment models 1 

apply Volume Delay Functions (VDFs) to model the travel time or the cost on a section or 2 

connection as a function of different parameters such as the road segment traffic volume, 3 

capacity, length, etc. VDFs further use the concept of PCU to convert the capacity and volumes 4 

into passenger car equivalents for each vehicle type (41–43). With the proposed approach, the 5 

derived functional relationship between the PCU factors and AV penetration rates is used as input 6 

to the VDFs in the macroscopic simulation models in order to forecast the implications of AVs 7 

on the network performance under various future mobility scenarios (Figure 1). 8 

 9 

 10 
 11 

Figure 1 Transition from microscopic to macroscopic analysis using PCU function 12 

 13 

SIMULATING AUTONOMOUS VEHICLES IN URBAN ROAD NETWORKS 14 

Microscopic simulation method provides information related to individual vehicles by 15 

modeling traffic flows at a high level of detail (44). The simulation inputs concern data from 16 

various sources such as the network geometry, traffic volume and modal split. In addition, data 17 

exported from the microsimulation can provide an initial, descriptive estimation of several 18 

impacts. Each vehicle is tracked as it interacts with surrounding traffic as well as with the 19 

environment. In microscopic simulation, interactions between vehicles at intersections are 20 

represented and thus, every vehicle in the network is recorded (45). This results to the basic 21 

principle of microsimulation, which depicts traffic conditions as realistically as possible. 22 

Moreover, microscopic simulation is widely used to evaluate new traffic control and 23 

management technologies as well as performing analysis of existing traffic operations (46). 24 

Furthermore, Giuffrè et al., (34) and Kang et al., (35) used a microscopic simulation model to 25 

estimate the PCE value of heavy vehicles in roundabouts and in freeways, respectively. 26 

For the above reasons, the microscopic simulation method could examine impacts on 27 

traffic and provide insights into the impacts of microscopic flow characteristics under several 28 

traffic simulation scenarios and evaluate the influence of different CAV penetration rates on a 29 

microscopic level. The microscopic simulation analysis explores the implications of CAVs on the 30 

network efficiency. Therefore, in the present research, the microscopic simulation method was 31 
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selected to extract data of different market penetration rates of CAVs in order to be further 1 

analyzed and then the PCU values of CAVs to be estimated in relation to traffic, control and road 2 

network conditions. 3 

 4 

Study Network 5 

The study network that has been simulated in the Aimsun Next mobility modeling 6 

software is the city center of Athens as shown in Figure 2 (left). The network created in Aimsun 7 

is presented in Figure 2 (right) and consists of 1,137 nodes and 2,580 road segments. The 8 

network data for each road segment concerned geometric as well as functional characteristics, 9 

namely, length, width, number of lanes, directions, free flow speed and capacity. The respective 10 

characteristics of nodes that were included in the model network were the allowed movements, 11 

number of lanes per movement, priority, traffic light control plans, free speed flow and capacity. 12 

More specifically, the road segments of the network are 1,424 secondary streets, 1,033 signalized 13 

streets and on/off ramps and 123 arterials. In addition, in 909 road segments of the network there 14 

are traffic lights, in 133 yield signs, in 354 stop signs and in the rest 1,184 road segments there 15 

are no signals. The total length of road sections is 348 km and the network size reaches 16 

approximately 20 km2.  17 

 18 

 19 
 20 

Figure 2 The city of Athens network in a conventional map (left) and in the Aimsun software 21 

(right) 22 

 23 

Moreover, the microscopic model was calibrated using data that were collected for year 24 

2019 from 107 detectors, which are recording traffic volume in main roads in Athens network. 25 

Extensive tests of the traffic model were performed so that the results of the model correspond to 26 

real traffic conditions. Since the R2 coefficient value was greater than 0.90 (specifically 0.98), 27 

the model represents a good validation. Additional data of field measurements were also 28 

considered. The OD matrices that were extracted consisted of 290×292 centroids and a total 29 

number of 82,270 passenger car trips and 3,110 truck trips for the morning peak hour. 30 

Furthermore, the Athens model included public transport, namely 95 bus and 14 trolley lines as 31 

well as their 1,030 public transport stations, the service frequencies and waiting times at stops. 32 

  33 
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Modeling Autonomous Vehicles 1 

For modeling connected and autonomous vehicles (CAVs) within the present research, 2 

we implemented an aggressive CAV profile, which relates to short clearance in car-following, 3 

short anticipation distance for lane selection, short clearance in gap acceptance in lane changing, 4 

limited overtaking, no cooperation and small gaps. Different driving profiles were investigated as 5 

in other studies (47–49). The behavior of CAVs was modeled by using the Gipps car following 6 

model (50). This model is able to mimic the behavior of real traffic; the parameters involved 7 

correspond to obvious driver and vehicle characteristics and affect the behavior of the simulated 8 

flow in logical consistent ways. More specifically, the model predicted the response of the 9 

following vehicle based on the assumption that drivers set limits to their desired braking and 10 

acceleration rates. The alterations in the parameters of the Gipps car-following model to simulate 11 

directly CAVs are shown in Table 1. In addition, in modeling CAVs, it was necessary to take into 12 

account their lane-changing behavior as it is considered to be different than human driven 13 

vehicle behavior. For this reason, the Gipps lane changing model was applied in the present 14 

research (51), as well. This model analyzes the decisions that drivers have to make before 15 

changing lanes and ensures that the simulated drivers behave logically in situations that are 16 

similar to real traffic conditions. The vehicle parameters of the car-following and lane-changing 17 

behavior that were used in microsimulation are presented in Table 1. 18 

For the present study, eleven (11) microscopic simulation scenarios of vehicle 19 

substitution with CAVs were executed. In each scenario, we gradually increased the penetration 20 

rate of CAVs (every 10%) along with the equivalent decrease in the conventional vehicles. The 21 

base scenario consisted solely of conventional vehicles and heavy vehicles. Each scenario 22 

included 2-hour simulation (before and during morning peak) and was executed multiple times 23 

(10 replications with random seeds generating stochastic results) and the aggregated output was 24 

extracted. Finally, the simulation step was 2 minutes. 25 

 26 

TABLE 1 Parameters of the Car Following and Lane Changing Model per Vehicle Type 27 

Model 

Factor 

Human-

Driven 

vehicle 

Aggressive 

CAV 

Explanation on factors of 

Aggressive CAV 

Reaction 

Time 

in car following 0.8 sec 0.4 sec 

Vehicle connectivity at STOP 1.2 sec 0.4 sec 

at traffic light 1.6 sec 0.4 sec 

Car 

Following 

Model 

Sensitivity 

Mean 100% 50% 
Implication of shorter headways 

compared to CVs 
Min 100% 10% 

Max 100% 90% 

Lane 

Changing 

Model 

Overtake Speed Threshold 90% 85% 
Implication of caution on overtaking 

manouvers compared to CVs 

Cooperate in Creating a Gap YES NO Smaller gaps compared to CVs 

Distance 

Zone 

Min 0.80 1.00 Logner distance at which lane change 

to diverge from a motorway compared 

to CVs Max 1.20 1.25 

Safety Margin 1.00 0.75 - 1.25 Longer clearance compared to CVs 

 28 

Network-Level Impacts 29 

Figure 3 depicts the resulting network-level MFD for each of the market penetration rate 30 

scenarios as a result of the average of 10 replications. This MFD is considered to be relatively 31 
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well-defined during free-flow and peak conditions. It can also be observed that, the increase of 1 

CAV market penetration rate leads to increased network throughput and therefore, increased 2 

capacity. The capacity increase can be attributed to the lower reaction times that CAVs can 3 

achieve due to their enhanced capabilities compared to conventional vehicles. More specifically, 4 

the average increase in capacity is 8% (140 veh/ 2 min) when CAVs reach 100% market 5 

penetration rate, compared to the capacity of the base-case scenario (0% CAVs).  6 

 7 

 8 
 9 

Figure 3 MFD for different CAV penetration rate 10 

 11 

In addition, the network capacity is increased by an average rate of 13% (200 veh/ 2 min) 12 

compared to the base-case scenario during peak hour conditions, whereas the highest increase in 13 

capacity appeared to be 18% (347 veh/ 2 min). Furthermore, the change in the penetration rate of 14 

CAVs from 20% to 30% appears to have the highest increase in capacity. In this case, the 15 

network capacity is increased by 5% as an average value. Finally, the MFD illustrates that, when 16 

more CAVs existing the network the density values are decreased improving network traffic 17 

conditions. 18 

Moreover, through a regression analysis in network-level, the scatter plot of the estimated 19 

PCU value for CAVs (based on Equation 1) with the market penetration rate of CAVs in the 20 

examined network was extracted (Figure 4). The polynomial model results show that, for low 21 

market penetration rates the PCU value of CAV is greater than 1, indicating that the CAVs will 22 

have a negative impact in the traffic flow. Reduction in PCU (below 1) is observed when CAV 23 

market penetration rate exceeds 40%. The estimated functional relationship and the R2 24 

coefficient value (R2=0.93) of the model is also presented in Figure 4. The high R2 value 25 

indicates a good fit. In addition, the t-statistics and p-value demonstrate that the estimated model 26 

is statistically significant at a 95% confidence level. 27 

 28 
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 1 
 2 

Figure 4 Estimated PCU factors versus CAV market penetration rate 3 

 4 

Link-Level Impacts 5 

The final output concerns link-level data, extracted from the microscopic simulation, and 6 

consists of the PCU estimation required variables, according to Equation 1, as well as additional 7 

traffic data, namely lane flow that were also recorded every 2 minutes (simulation step). These 8 

data were enriched with the number of lanes, the public transport lines and the length of each 9 

road segment. In addition, the corresponding road type and traffic control type of the road 10 

segment were also included. Therefore, the final dataset consists of the the variables presented in 11 

Table 2. 12 

 13 

TABLE 2 Variables in Dataframe 14 

Variable Type Description 

PCU Continuous Passenger Car Unit factor for CAVs  

Lane flow Continuous Road segment traffic flow per lane (veh/h/lane)  

Length Continuous Length of road segment (m) 

Control type Categorical 0: No signal, 1: Yield sign, 2: Stop sign,  

3: Traffic light 

Road type Integer 0: Secondary Street,  

1: Signalized street - On/off ramp, 2: Arterial  

Penetration rate Integer Market penetration rate of CAVs (0-100%) 

Number of lanes Integer Νumber of lanes of road segment 

Number of public transport lines Integer Number of public transport lines  

occurring in road segment 

 15 

Figure 5 illustrates that road type and traffic control type significantly affect the PCU 16 

factors of CAVs. It can also be observed that arterials indicate lower PCU factor range of CAVs 17 

comparing to secondary and signalized streets. This is justifiable, since higher speeds are 18 

observed in arterias and therefore CAVs operate more efficiently. Respectively, non-controlled 19 



 
Gasparinatou, Oikonomou, Tympakianaki, Casas, Djukic, Vlahogianni, and Yannis 

10 

 

road segments present lower PCU factors. Therefore, higher PCU factors of CAVs are presented 1 

when there is a stop sign or traffic light compared to when there is a yield sign or no control. 2 

Finally, Figure 6 displays the distribution of PCU values that follows the typical pattern for all 3 

normal distibutions with a range of 0.55-1.4 and an average value of 0.95. 4 

 5 

 6 
 7 

Figure 5 Estimated PCU factors in relation to road type and traffic control type 8 

 9 

 10 
 11 

Figure 6 PCU distribution 12 

  13 
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FACTORS AFFECTING PCU VALUES USING MACHINE LEARNING 1 

In order to estimate the factors converting autonomous vehicles to PCU, a Random Forest 2 

(RF) regression model was developed. The RF is a decision tree-based algorithm that combines 3 

the prediction of several simpler models, i.e., Decision Trees (DT), in order to improve 4 

robustness and generalization. In RF, a predefined number of decision trees is developed using a 5 

random sample drawn from the training set, following certain limitations about the size of the 6 

trees and the number of leaves. The randomness introduced in the algorithm is considered to 7 

decrease the variance and chances of overfitting, two issues that are common with simple 8 

decision trees. Another advantage of RF over DT is that it is flexible to the data on which it is 9 

trained, resulting to less significant effects when training data are differentiated (52, 53). The 10 

pseudocode of RF for regression is the following: 11 

 12 

1. For b=1 to B: 13 

a. Draw a bootstrap sample Z* of size N from the training data. 14 

b. Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating 15 

the following steps for each terminal node of the tree, until the minimum node 16 

size nmin is reached. 17 

i. Select m variables at random from the p variables. 18 

ii. Pick the best variable/split-point among the m. 19 

iii. Split the node into two daughter nodes. 20 

2. Output the ensemble of trees {Tb}
𝐵
1

 . 21 

The prediction at a new point x is given as follows (Equation 2): 22 

 23 

f̂
B

rf
(x)= 

1

B
 ∑ Tb

B
b=1 (x)   (2) 24 

 25 

In contrast to simple decision trees, which provide simple classification rules, which can 26 

also be applied manually, in each of their nodes, Random Forests are not so easy to interpret, due 27 

to their complexity. Interpretability can be distinguished in the following categories (54): (1) 28 

Model-specific interpretation tools that are limited to specific model classes and deal with 29 

weights and structural properties (e.g. the practices followed in linear models), and (2) Model-30 

agnostic tools that can be used on any Machine Learning (ML) model and are applied after the 31 

model has been trained (post hoc) and aim to analyze the relationship between feature input and 32 

output pairs without considering weights or structural information specific to the model. 33 

Moreover, interpretation can be seen as global, when the entire behavior of a model is attempted 34 

to be explained or local when the focus is on why a prediction for a certain instance is given. 35 

Some well-known methods for ML interpretability include the Partial dependence plots, the 36 

permutation importance and conditional permutation importance, the Individual conditional 37 

expectation, the Local surrogate models, the Accumulated Local Effects (ALE) and the SHAP 38 

(54).  39 

In the specific study, we use the Mean Decrease Accuracy method of computing the 40 

feature importance on permuted out-of-bag (OOB) samples based on mean decrease in the 41 

accuracy, which is similar to permutation-based methods. Given a base value of MSE in out-of-42 

bag-CV, we permute the values of each variable at a time and compute the % relative change in 43 

MSE (%IncMSE); the most important variables will have the higher values of %IncMSE. 44 
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To complement the above approach, researchers used the node imputity index 1 

(IncNodePurity), which relates to the decrease in the loss function after a certain split using a 2 

specific variable; the larger the decrease of impurity after a certain split, the more informative the 3 

corresponding input variable (55). The two indices are shown to be highly correlated and share 4 

the same bias (56). 5 

For dataframe analysed above, a random forest model was developed with dependent 6 

variable the PCU factor of CAVs and independent variables the simulated lane flow, the road 7 

type and traffic control type, the length, the number of lanes and the number of public transport 8 

lines of each road segment, as well as the penetration rate of CAVs (Table 2). The model’s 9 

parameterization is as follows: 10 

 11 

• Base calssifier: Decision Tree,  12 

• Number of tree estimators: 100,  13 

• Maximum depth limitation: No (inf),  14 

• Minimum number of samples to split an internal node: 2,  15 

• Minimum number of samples for each leaf node: 1 16 

 17 

Training results show that the RF model can explain the 45.9% of the variance in the 18 

dataset, with a mean squared residuals of 0.0227. The % explained variance is a measure that 19 

describes how well the model can make predictions of a test set that explains the target variance 20 

of the training set. Therefore, it is considered that the RF model presents a good fit. In addition, 21 

the Mean Absolute Percentage Error (MAPE) is investigated and it seems that the RF model can 22 

predict the PCU factors of CAVs with an error of 8.35%.  23 

The variable’s importance as unveiled from the RF models is very helpful to define which 24 

variables are significant. Figure 7 demonstrates the importance rankings of the RF variables 25 

based on %IncMSE and IncNode Purity. The variables with the higher values of both measures 26 

are the lane flow and length of the road segment and followed by the market penetration rate of 27 

CAVs and the number of public transport lines variables. The variables presenting lower values 28 

are the number of lanes, control type and road type of road segment variables. Additionally, the 29 

variable with higher %IncMSE rate is the road segment length, whereas the ones with higher 30 

IncNode Purity are the number of transit lines occuring in road segment and its lanes’ flow. 31 

Finally, it can be concluded that the lane flow and length of road segment variables are 32 

considered as the most important variables. It should be noted that the specific variable 33 

importance should be interpreted as a relative ranking of predictors (57, 58). Although, in RF 34 

models, the magnitude of the effect and the sign of each variable are not easily identified, 35 

specific xAI techniques exist that can be implemented in order to extract the sign of the influence 36 

of each predictor to the PCU value (59).  37 

 38 
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 1 
 2 

Figure 7 %IncMSE in relation to IncNode Purity 3 

 4 

CONCLUSIONS 5 

The recent technological innovations lead to a new mobility paradigm, which will be 6 

mostly marked by autonomous vehicles. The integration of Connected and Autonomous Vehicles 7 

(CAVs) to existing traffic will take place in the near future with great effects on the urban 8 

environment. For transport researchers, as well as stakeholders, it is prudent to anticipate the 9 

impacts that automation will introduce. Within this framework, the present research proposed an 10 

approach to estimate the impact of CAVs on traffic were compared to a typical Passenger Car Unit 11 

(PCU) as the ratio of the capacities of conventional vehicles to the corresponding capacities of the 12 

CAVs on link level of an urban network based on a network-level Macroscopic Fundamental 13 

Diagram (MFD). 14 

To that end, a set of simulation-based analyses were first conducted on the Athens (Greece) 15 

microscopic simulation tesbed, using Aimsun Next modeling software, for the identification and 16 

measurement of the impacts of CAVs on the network. Eleven (11) market penetration rate scenarios 17 

(0-100%) were established with a simulation duration of two hours and a simulation time step of 18 

extracting data of two minutes. Furthermore, the advent of automation is modelled within the 19 

network by the examination of an aggressive CAV profile. Based on the results of the microscopic 20 

simulation, the MFD was used in order the network capacities to be derived. In particular, the 21 

capacities were then translated into PCU factors for each of the investigated CAV penetration rates 22 

and afterwards a polynomial relationship between PCU values of CAVs and their penetration rate 23 

was indentifed. A deeper look at the link level impacts of CAVs on capacity showed that PCU 24 

factors of CAVs could be linked to the geometry and control characteristics of each road segments. 25 

Finally, a Machine Learning (ML) model was trained using the link-level results obtained by the 26 

microscopic simulation experiments, in order to further investigate these interrelationships. 27 

Findings demonstrated evidence that, automation and connectivity will work towards 28 
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beneficially improving traffic conditions in cities and especially network capacities. In network 1 

level, the average increase in capacity, when CAVs reach 100% market penetration rate, is 2 

identified to be 8%, compared to the capacity of no automation scenario. In addition, when more 3 

CAVs existing the network the density values are expected to be decreased by improving 4 

network traffic conditions. Moreover, another important outcome of the performed network level 5 

analysis is that, there exists a significant relationship between PCU factors of CAVs and their 6 

market penetration rate in the traffic mix. More specifically, for low market penetration rates the 7 

PCU value of CAV is greater than 1, indicating that the CAVs will have a negative impact in the 8 

traffic flow, while a reduction in PCU (below 1) is observed when CAV market penetration rate 9 

exceeds 40%. In a link level approach, the PCU value of CAVs is found to be highly affected by 10 

the observed lane flow, length, control type, road type, number of lanes, and number of public 11 

transport lines of the road segment, as well as the market penetration rate of CAVs. The most 12 

significant variables are the lane flow and length of the road segment followed by the market 13 

penetration rate of CAVs and the number of public transport lines variables. Finally, in arterials, 14 

the PCU values of CAVs are lowaer compared to those of the secondary and signalized streets, 15 

probably due to the higher observed speeds. Non-controlled road segments present lower PCU 16 

values. 17 

The above network and link level impacts of CAVs to traffic capacity may have far-18 

reaching implications for the deployment of citywide Connected and Automated Traffic (CAT) 19 

strategies. The extracted PCU values are extremely useful for evaluating and forecasting the 20 

long-term impacts on travel demand (e.g. mode and destination choice), as well as wider impacts 21 

such as changes in land use (area attractiveness, employment, parking spaces, etc.). The 22 

approach can be used by city authorities, operators and other stakeholders to adjust the 23 

macroscopic volume delay functions and test the impact of future mobility strategies in a 24 

strategic level. The estimated values and functional relationships should be further evaluated 25 

with respect to the ability of the approach to scale up to different networks. The further 26 

investigation of scalability and transferability would provide robust PCU functional relationships 27 

that can be directly applied to macroscopic models of other urban networks in order the 28 

corresponding CAVs impacts to be analyse, without the need of a microscopic simulation 29 

analysis. Nevertheless, the critical role of connectivity and its impact in relation to simple 30 

automation needs is to be further investigated, taking into account the particularities of different 31 

areas (i.e., vehicle types, number of signalised intersections, dedicated lanes). 32 
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