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Abstract 
 
Despite the efforts to improve road safety, road crashes constitute a major global societal problem with more than 
1.25 million fatalities per year (first mortality cause for the ages 15-29). Crash Prediction Models (CPMs), 
including Safety Performance Functions (SPFs) and Crash Modification Factors (CMFs) and other advanced 
statistical models are essential tools for transport authorities and highway agencies, mostly in developed countries, 
to predict crashes, analyze injury severity, identify hotspots, and assess safety countermeasures. The objective of 
this present study is to provide a state-of-the-art review of international literature on microscopic road safety 
modelling methods and statistical approaches, and to identify trends and gaps of knowledge in pertinent research. 
A structured keyword search in online scientific databases was performed to identify the most relevant publications 
on crash prediction modeling. Following a set of rigorous criteria, more than 100 research publications on 
microscopic crash modeling were identified as appropriate for this review. A second level of categorization was 
applied, and included: (a) AASHTO's Highway Safety Manual and related publications, also including recent 
publications on its expected update, (b) development of Safety Performance Functions (SPFs), i.e. basic crash 
prediction models developed for "base conditions", (c) estimation and use of Crash Modification Factors (CMFs), 
to account for differences in geometric design/traffic control features between the base conditions of the model 
and local conditions of the site under consideration, and (d) stand-alone multivariate Crash Prediction Models that 
usually include many explanatory variables compared to SPFs, in order to consider site characteristics on their 
own, without the use of CMFs, and (e) multivariate models using machine learning approaches. The paper 
discusses the current state-of-art in the field of crash prediction modeling, emphasizing on future directions as well 
as strengths and limitations of the existing approaches.  
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1. Introduction 

Road authorities, traffic engineers, and road safety analysts employ crash occurrence analysis with the objective 
to identify crash contributing factors and in turn, select appropriate countermeasures. The analysis of crash records 
can reveal crash contributing factors related to road user behavior (e.g., seat belt or helmet use), vehicle type and 
vehicle conditions (e.g., motorcyclists or old vehicles are more prone to injury-related crashes), external conditions 
(e.g., weather and lighting conditions, time of the day, etc.), and the road infrastructure. Crash prediction models 
(CPMs) including Safety Performance Functions (SPFs) and Crash Modification Factors (CMFs) are essential 
tools to predict crashes and use this information to identify hazardous locations and/or evaluate the effectiveness 
of countermeasures. CPMs exist for the microscopic, mesoscopic, and macroscopic levels. Essentially, this 
differentiation is based on the unit of analysis. Microscopic modelling refers to models that use as basis for the 
analysis short homogenous road segments, or specific sites (intersections, interchange-influence areas, etc.). 
Mesoscopic and macroscopic models have larger units of analysis that can be at the zone-level up to the region-
level. 
 
The use of CPMs in the safety management process is of high importance as these models can be used to estimate 
the expected number of crashes at a site and in turn, increase the chances of correctly classifying a site as hazardous 
[1]. Therefore, the use of CPMs has the potential to improve safety but at the same time, ensure a better allocation 
of road safety funding. The objective of this study is to provide a state-of-the-art review of international literature 
on microscopic crash modelling methods and statistical approaches, and to identify trends and gaps of knowledge 
in pertinent research.  
 
The rest of this paper is organized as follows. Section 2 presents the methodology that was followed to identify 
resources related to microscopic crash prediction modeling. The third section presents the findings of the review, 
focusing on the main approaches to develop CPMs and CMFs as well as discussing the limitations of the various 
predictive methods. The Discussion section centers on issues usability of CPMs and CMFs as well as practical 
implications. Lastly, the Conclusions present a summary of this work and discuss paths for future research.  

2. Methodology 

The literature review was conducted on documents, scientific papers, reports, project deliverables etc. discussing 
microscopic road safety analyses and models. As this research field is particularly extensive - a preliminary non-
exhaustive keyword search on ScienceDirect, using as keywords the terms: "road" AND ("accident prediction" 
OR "crash prediction" OR "safety performance function" OR "crash modification") returned 1.097 results as of 
May 2020 - it was decided to set specific criteria for the examination of relevant references: horizontal criteria, 
regarding the language and the geographic origin, and vertical criteria, according to the different types of 
references. 
 
Namely, the horizontal selection criteria excluded the following categories of studies: 
• Publications in languages other than the English language. 
• Publications from geographic origin of reports and studies other than the following areas: Europe, USA, 

Canada, Australia, New Zealand, and China. 
• Studies on macro/planning-level applications (analysis based on jurisdiction, GDP, etc.) and on mesoscopic 

models.  
• Publications on models focusing on specific user groups (e.g., pedestrians, bicyclists, powered two-wheelers, 

heavy vehicles) or on specific road elements (tunnels, bridges, railway level crossings, etc.) were also excluded. 
 
Vertical selection criteria differ according to each category of references. Specifically: 
• EU Research Project Deliverables (also including project internal reports, if available): All available references 

originating from EU research projects were included in the review.  
• Reports, guidelines, manuals from public authorities and governmental organizations: Reports, guidelines and 

manuals from authorities and organizations at a national level were included in the review (e.g., American 
Association of Highway Transportation Officials (ASHTO), Federal Highway Administration (FHWA), 
National Cooperative Highway Research Program (NCHRP), AUSTROADS, New Zealand Transport Agency, 
etc.). Reports from regional authorities (e.g., State Departments of Transport in the US) were generally not 
included in the review, except for one indicative example. 
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• Reports from other non-governmental organizations: Reports from non-governmental organizations 
(academia, research institutes) were generally included in the review, if they were of national or international 
interest, i.e., based on data covering large geographical areas, or utilizing an interesting methodology. 

• Journal Papers: The selection of journal papers to be included in the review was based on a step-by-step search 
process in the Scopus bibliometric database (date of query: 03/06/2020) combining keyword search, 
publication date and number of citations. 

• Conference Papers: Publications in scientific conferences were not included in the review, considering that 
researchers generally prefer to publish high quality work in journals with a peer review process. 

 
It is noted that some additional literature references were included in the review (e.g., references retrieved from 
other reviewed papers), even if not derived from the explicit implementation of the aforementioned methodology. 
Such references were considered to provide important insights and significantly advance knowledge in the field 
of microscopic/ mesoscopic safety modelling, or they refer to geographic areas for which no other publications 
exist. More than 100 publications were identified as most relevant and of appropriate quality and were considered 
for this review. These publications refer to models on segments and/or junctions and due to space limitations, it 
was decided to exclude the publications that focused on junction safety (i.e., intersections, roundabouts, and 
interchanges).  
 
Microscopic modelling refers to models that use as basis for the analysis short homogenous road segments, or 
specific sites (intersections, interchange-influence areas, etc.), depending on the model. Such models tend to use 
detailed explanatory variables, which, besides exposure (probably the single most important variable in all crash 
prediction models), are mostly related to road geometric characteristics (curvature, lane width, number of lanes, 
type of traffic control, etc.) but also operational characteristics (speed limits, signage, etc.). The following four 
groups were formed for the identified studies on microscopic models: 

 
• Publications related to AASHTO's Highway Safety Manual Predictive Method (AASHTO, 2010, 2014) in 

addition to the manual itself.  
• Publications on the development of Safety Performance Functions (SPFs). SPFs are basic crash prediction 

models developed for "base conditions", and are typically a function of only a few variables, primarily average 
annual daily traffic (AADT) volumes and segment length.  

• SPFs cannot be used on their own for crash prediction as they require the use of Crash Modification Factors 
(CMFs), to account for differences in geometric design or in traffic control features between the base conditions 
of the model and local conditions of the site under consideration.  

• Stand-alone multivariate CPMs are models that include a large number of explanatory variables compared to 
SPFs, in order to consider site characteristics on their own, without the use of CMFs. 

3. Analysis and Results 

The following subsections discuss existing research on microscopic CPMs and CMFs. For microscopic modeling, 
the most well-known approach is the AASHTO’s Highway Safety Manual (HSM) which is used at the international 
level, or more likely has been the base of developing a handful of prediction models internationally. The HSM 
Predictive Method (see section 3.1) suggests that a base SPF is developed for the base conditions of a road facility 
(e.g., two-lane rural roads, urban arterials, rural four-leg intersections, etc.) and then, the impact of all additional 
road design and operational elements on crash frequency is captured by the respective CMFs. Section 3.2 present 
existing approaches for the development of CMFs. Besides HSM Predictive Method that proposes the use of SPF-
CMF, there are numerous efforts on developing other CPMs, referred herein as stand-alone multivariate CPMs; 
these models are presented in section 3.3. These models do not consider base conditions separately and essentially, 
include multiple explanatory variables in one CMP. There is a recent trend for developing multivariate CPMs 
using machine learning approaches (see section 3.3.3), mainly to achieve a higher predictive performance and/or 
incorporate more real-time explanatory variables (e.g., traffic conflicts). 
 

3.1 AASHTO Highway Safety Manual 
The HSM Predictive Method [2-3] was developed in the US and has been adopted by international practitioners 
and road agencies. The HSM Predictive Method has stimulated pertinent research in the development of SPFs and 
CMFs worldwide, with several hundreds of CMFs being currently available by independent research outside the 
US. The next subsections present the main concept (section 3.1.1) and limitations of the method (3.1.2). 
 
3.1.1 Concept 
The basic concept of the predictive method is that of a simple Safety Performance Function for base conditions 
(SPFbase), later adjusted to local conditions using Crash Modification Factors (CMFs). SPFs and CMFs are 
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developed for certain road facility types, e.g., two-lane rural roads, urban arterials, rural four-leg intersections, etc. 
For each of these road facilities, the “base” conditions consider traffic volume in the form of Annual Average 
Daily Traffic (AADT) and segment length for the case of segments. The general form of the predictive models in 
HSM (AASHTO, 2010), for a given type of road facility, is shown in Equation (1) [2]: 
 
 Npredicted = NSPF x (CMF1 x CMF2 x ... x CMFy) x C  (1) 
 
Where NSPF is the predicted average crash frequency determined for the base conditions according to the SPFbase, 
CMF1 .... CMFy are the crash modification factors that account for specific road design and operational 
characteristics, C is the calibration factor to adjust the SPF for local conditions related to the network where the 
model is to be applied, and lastly, Npredicted is the predicted average crash frequency.  
 
Using Equation (1), the predicted average crash frequency of an individual site, Npredicted, can be estimated, based 
on geometric design, traffic control features and traffic volumes of that site. To improve the statistical reliability 
of the estimate for an existing site or facility, the observed crash frequency Nobserved, can be combined with Npredicted, 
to obtain the expected average crash frequency, Nexpected. This is an estimate of the long-term average crash 
frequency that would be expected, given sufficient time to make a controlled observation. Since the observed crash 
frequency in a site, roadway or network varies randomly over any period, using averages based on short-term 
periods (e.g., 1 to 3 years) may give misleading estimates due to regression-to-the-mean bias. The long-term 
average crash frequency is estimated using the Empirical Bayes. 
 
3.1.1 Limitations 
Researchers have identified several shortcomings in the HSM approaches. Regarding the Safety Performance 
Functions, since the HSM SPFs have been developed using data only from the states of California, Michigan, 
Minnesota, Texas, and Washington [4], they may not adequately reflect the geographic and traffic safety diversity 
across the U.S. In fact, several US state transportation agencies have used the calibration procedure and have noted 
issues related to poor accuracy when comparing the predictive results of the calibrated SPFs to reported crash 
frequencies or locally developed SPFs. For these same reasons, individual CMFs applied to an SPF might also be 
biased when applied to different states.  
 
Gooch et al. have also questioned the HSM approach for horizontal curves on two-way, two-lane rural roads of 
applying an SPF developed using only tangent sections and adjusting this value using a CMF for curvature, as they 
found that the shape of the relationship between safety performance and traffic volume actually differs for 
horizontal curve and tangent segments [5]. Thus, they have effectively argued in favor of the development of 
separate SPFs for tangent and curves. 
 
Research has also identified weaknesses in the consideration of Crash Modification Factors in the HSM predictive 
method, with most prominent the handling of multiple treatments. The preferred approach proposed in the HSM 
is to apply a single CMF that represents the combined treatments. However, such complex CMFs rarely exist in 
international literature, and the second and most applied procedure is to multiply the CMF values for each 
treatment alone to arrive at the single combined effect. Research has shown that this is an oversimplified approach 
and several other more appropriate, alas more complex, methods should be used for this purpose [6-8]. 
 
Finally, the calibration methodology of the HSM has also received criticism. Researchers have identified poor 
model fit in calibrated as per the HSM models, and they have suggested improved, yet also more complex and data 
intensive, methods, such as calibration per crash type, or multiple calibration factors for different components of 
the predictive method, SPF parameters and CMFs rather than a single calibration factor [9]. 
 

3.2 Development of CMFs 
The development of crash modification factors (CMFs) has attracted lots of research at an international level in an 
effort to quantify the safety impact of various road designs, road and operational elements. Various methods have 
been found appropriate for developing CMFs (see section 3.2.1) while there are several considerations on how 
researchers and practitioners can develop robust and reliable CMFs.  
 
3.2.1 Methods for CMF development  
Several different approaches and methods are used internationally for the development of Crash Modification 
Factors. FHWA (2010) summarized these methods listing their strengths and weaknesses in addition to describing 
them (see Table 1). Before-after studies, especially when combined with the Empirical Bayes (EB) [10], are 
commonly considered as the best approach for developing CMFs. Compared with other methods, it is a statistically 
robust method that can effectively account for regression-to-the-mean bias, for traffic volume changes over time, 
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and for trends in the safety performance not related to the examined treatment or feature. Several researchers 
attempted to compare EB methods to traditional approaches for CMF development and found the former to be 
more appropriate [11, 12] however, EB was found to be comparable to Full Bayes (FB) [13]. This would indicate 
that it may not be worth the additional complexity and data needs of FB method, especially considering that for 
road safety practitioners EB is already too complicated. It was suggested that the FB is worth considering for 
situations where it is difficult to acquire a large enough reference group to calibrate SPFs required for the EB 
approach. Lastly, when it is not feasible implementing a before-after approach (and EB) with careful selection of 
sites, adequately large sample, inclusion of appropriate explanatory variables in the model, and proper assumption 
of the relationship between variables and their safety effects, reliable CMFs can also be developed from cross-
sectional regression studies.  
 

Table 1: Summary of methods for CMF development (Adopted from [14]) 
Method Applications Strengths Weaknesses 

Before–after 
with 
comparison 
group 

-Treatment is similar amongst 
treatment sites. 
-Before and after data are available 
for both treated and untreated sites. 
-Untreated sites are used to account 
for non-treatment related crash 
trends. 

Simple 
Accounts for non–treatment-
related time trends and 
changes in traffic volume. 

Difficult to account for 
regression-to-the-mean. 

Before–after 
with 
empirical 
Bayes 

-Treatment is similar amongst 
treatment sites. 
-Before and after data are available 
for both treated sites and an 
untreated reference group. 

Accounts well for 
regression-to-the-mean, 
traffic volume changes over 
time, non–treatment-related 
time trends. 

-Relatively complex. 
-Cannot include prior 
knowledge of treatment. 
-Cannot consider spatial 
correlation. 

Full Bayes Useful for before–after or cross-
section studies when: 
-There is a need to consider spatial 
correlation among sites. 
-Complex model forms are required. 
-Previous model estimates or CMF 
estimates are to be introduced in the 
modeling. 

-Reliable results with small 
sample sizes. 
-Can include prior 
knowledge, spatial 
correlation, and complex 
model forms in the 
evaluation process. 

Implementation requires a 
high degree of training. 

Cross-
sectional 

-Useful when limited before–after 
data are available. 
-Requires sufficient sites that are 
similar except for the treatment of 
interest. 

-Possible to develop 
CMFunctions. 
-Allows estimation of CMFs 
when conversions are rare. 
-Useful for crash prediction. 

-CMFs may be inaccurate 
for a number of reasons: 
inappropriate functional 
form, omitted variable 
bias, correlation among 
variables. 

Case-control -Assess whether exposure to a 
potential treatment is 
disproportionately distributed 
between sites with and without the 
target crash.  
-Indicates the likelihood of an actual 
treatment through the odds ratio. 

-Useful for studying rare 
events because the number 
of cases and controls is 
predetermined. 
-Can investigate multiple 
treatments per sample. 

-Can only investigate one 
outcome per sample. 
-Does not differentiate 
between locations with one 
crash or multiple crashes. 
-Cannot demonstrate 
causality. 

Cohort Used to estimate relative risk, which 
indicates the expected percent 
change in the probability of an 
outcome given a unit change in the 
treatment. 

-Useful for studying rare 
treatments because the 
sample is selected based on 
treatment status.  
-Can demonstrate causality. 

-Only analyzes the time to 
the first crash. 
-Large samples are often 
required. 

Meta-
analysis 

Combines knowledge on CMFs 
from multiple previous studies 
while considering the study quality 
in a systematic and quantitative 
way. 

-Can be used to develop 
CMFs when data are not 
available for recent 
installations, and it is not 
feasible to install the 
strategy and collect data. 
-Can combine knowledge 
from several jurisdictions 
and studies. 

-Requires the identification 
of previous studies 
-Requires a formal 
statistical process.  
-All studies included 
should be similar in terms 
of data used, outcome 
measure, and study 
methodology. 



Authors’ last names / RSS2022, Athens, Greece, June 08-10, 2022 

6 
 

Expert panel -Expert panels are assembled to 
critically evaluate the findings of 
published and unpublished research. 
-A CMF recommendation is made 
based on agreement amongst panel 
members. 

-Can be used to develop 
CMFs when data are not 
available for recent 
installations, and it is not 
feasible to install the 
strategy and collect data. 
-Can combine knowledge 
from several jurisdictions 
and studies.  
-Does not require a formal 
statistical process. 

-Traditional expert panels 
do not systematically 
derive precision estimates 
of a CMF. 
-Possible complications 
may arise from 
interactions and group 
dynamics. 
-Possible forecasting bias. 

 
After reviewing 36 studies on the development of CMFs for rural and/or urban roads it was found that 13 of them 
used the cross-sectional approach while 16 of them used the EB approach. The rest of the studies chose one of the 
above approaches.  
 
3.2.2 Considerations regarding the CMF development 
In addition to the study design, several factors may result in erroneous estimations of the safety effect of the studied 
treatments, and in turn result in erroneous CMFs. Table 2 summarizes these factors and suggests ways for their 
mitigation.  
 

Table 2: Factors affecting the treatment evaluation 
Factor Mitigation 
Changes in 
traffic flow 

Traffic may experience changes over time, unrelated to the treatment implementation (e.g., general 
population growth). These changes should be considered when evaluating the treatment otherwise 
its effect will be over- or underestimated.  

General crash 
trends 

Crash trend may change regardless of the studied treatment (e.g., due to safer vehicle design, 
presence of enforcement). To simply capture the effect of the treatment it is important to include 
control sites in the analysis.  

Regression to 
the Mean 

Crashes are rare and random effects and vary over time. Capturing a small time period for the 
analysis may result in ignoring the long-term crash trend and working with a local minimum or 
maximum. Capturing larger periods of time is recommended.  

Crash 
migration 

Crash migration is often the result of changes in traffic flow or driver behavior associated with the 
implementation of the examined treatments. Essentially crashes may change type (e.g., side-swipe 
to rear end) or “migrate” to another sites nearby the treatment site. For changes in the crash type, 
the evaluation of the treatment should focus both on the total number of crashes before-after and on 
the number of crashes per type.  

Adjustment 
period/  
halo Effect 

An adjustment period is in some cases encountered after the introduction of a treatment and to avoid 
capturing data from the adjustment period the “after” period should not overlap with the former.  

Statistical 
validity 

According to [15] six criteria are identified for assessing statistical conclusion validity: use of an 
appropriate sampling technique, having an adequate sample size, specifying whether the evaluation 
is to be in terms of crash numbers or injury severity outcomes, reporting the uncertainty associated 
with estimates, and using appropriate statistical testing techniques. Two problems that commonly 
complicate crash studies are zero inflation and over dispersion. 

 
A main issue regarding CMFs, even if they have been developed in a reliable manner following all the above 
recommendations, is that they may not be transferable. Previous research has shown that a CMF is not a universal 
constant (i.e., having the same value in all conditions), but instead it should be viewed as a random variable, the 
value of which depends on a host of factors (circumstances of implementation) [16]. Therefore, a CMF has a 
probability distribution with a mean and a variance. Thinking of CMFs as random variables allows the question of 
transferability to be correctly framed. To increase the effectiveness of CMF research, the variance must be reduced. 
Two approaches were discussed in [16]: conducting more studies and making the CMF a function of the 
circumstances of implementation. 
 
3.2.3 Existing CMFs and their usability 
The FHWA lists existing CMFs (developed internationally) at the CMF Clearinghouse 
(http://www.cmfclearinghouse.org). The database is frequently updated to include the recently developed CMFs 
and almost 7,000 CMFs from independent studies can be found there. It is therefore obvious that an exhaustive 
review of pertinent literature is both unfeasible, especially for this paper. However, it is important to note that 

http://www.cmfclearinghouse.org/
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while there is a wide range of CMFs for all road types as well as junction types (e.g., four-leg intersection and 
interchanges) and they can be potentially used by practitioners, there are several limitations. Some CMFs have 
been developed for particular conditions and cannot be transferred to different ones without proper calibration. 
For example, they may refer to certain crash types (e.g., single vehicle crashes or night-time crashes). Some CMFs 
may be based on data from rural roads and so, are not appropriate for other roads (e.g., urban roads or motorways). 
Therefore, it is critical to be aware of the conditions under which a CMF was developed. A second issue that 
becomes apparent when one reviews available CMFs on the same treatment/design element (e.g., horizontal curve 
radius) is that existing studies produce different CMFs even when the same type of crashes and roads are 
considered. These differences are attributed to local human factors (e.g., vehicle fleet characteristics, driver 
behavior, etc.) and critical judgment and expertise is required to synthesize the available information.  
 

3.3 Multivariate CMPs 
In parallel to the HSM concept, researchers have developed multivariate CPMs. These models are conceptually 
more complex than the SPF-CMF approach, as it is required to incorporate all significant explanatory variables in 
model, and this is probably the most challenging aspect when developing these models. Data availability 
determines a set of potential explanatory variables for the models however, the set of final model variables is 
usually smaller. The main reasons for excluding explanatory variables are: (i) correlation between variables, as a 
model that incorporates correlated variables will have a reduced performance and (ii) some variables are not found 
statistically significant. The determination of the final set of explanatory variables is a complex process and 
requires multiple iterations, to check which explanatory variable combinations maximize the model’s predictive 
power. The following subsections presents studies that have developed models for rural road or motorway 
segments using conventional statistical approaches. The last subsections present crash prediction models based on 
machine learning algorithms.  
 
3.3.1 Models for rural road segments 
Several studies at the international level have attempted to develop multivariate crash predictions models for rural 
segments (see table 3). The great majority of these studies use Negative Binomial models (NB) while for rural 
segments it is evident that the most important explanatory variables are AADT and variables related to the presence 
and type of horizontal curves, while variables related to crossing flows (e.g., driveway density or presence of 
intersections) have also been found significant in some cases. Regarding the significant variables, it is evident 
from Table 3 that for the same dataset, the significant variables change from one model type to another, meaning 
that specifying the appropriate model type is critical for the quantification of safety.  
 

Table 3: Multivariate CPMs for rural road and motorway segments 
Study Model Crash type Statistically significant explanatory variables 
Rural road segments  
[17] P single-vehicle 

crashes 
daytime, volume/capacity ratio, shoulder width, presence of intersections 
and driveways, presence of passing lanes 

multi-vehicle 
crashes 

daylight conditions, number of intersections and driveways. 

[18] NB POD crashes Horizontal alignment, speed limit, visibility, road surface condition, 
AADT RENB POD crashes 

NB Injury crashes Horizontal alignment, speed limit, visibility, AADT 
RENB Injury crashes Speed limit, AADT 

 

[19] NB all crashes AADT, lane width, horizontal curvature, vertical curvature, density of 
pedestrian crossings, density of access points 

[20] NB all crashes AADT, curve ratio, speed differentials density 
[21] NB all crashes AADT, average curvature change rate, shoulder width, forest environment  
Motorway segments  
[22] P all crashes  Season (snow, dry), median width, three traffic lanes, grade  

REP Season (dry, snow), grade, three traffic lanes 
Spatial Season (snow, dry), degree of curvature, median width, three traffic 

lanes 
[23] Spatial  all crashes AADT, segment length, delay, speed limit 
[24] P and 

NB 
all crashes 
(curve) 

AADT, segment length, radius of horizontal curves 

all crashes AADT, segment length, presence of junctions 
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(tangent) 
[25] NB all crashes AADT, differential speed, difference in friction, grade, tangent length 
[26] NB all crashes AADT, segment length, horizontal curvature 

 P: Poisson, REP: Random Effects Poisson, NB: Negative Binomial, RENB: Random Effects NB 
 
3.3.3 Models for motorway segments 
Based on Table 3, motorway segment safety is mostly impacted by AADT, vertical and horizontal curves. The 
impact of AADT in all multivariate CPMs (both for segments and intersections) aligns with the HSM logic, where 
the base SPF has this variable in addition to segment length.  
 
3.3.3 Approaches using machine learnings models 
More recently, there is a growing interest on machine-learning (ML) multivariate CPMs. ML models are 
implemented to address some limitations of the traditional statistical models. The later may be limited by the fact 
that they require some assumptions for the distribution of the data and also, they assume a linear form between the 
response variable and the explanatory variables. Additionally, developing parametric models requires multiple 
trial and error tests before determining the final model structure or in other words, a set of statistically significant 
parameters. ML models are not affected by the data distribution, while when it comes to model specification it can 
be seen from the reviewed literature that trial and error processes are omitted. Lastly, ML models appear more 
appropriate for big data or real-time data applications, as they are able to handle well large sample sizes.  
 
Most studies on crash prediction focus on either (i) classifying road events as crashes or non-crashes or (ii) 
predicting the injury severity of a crash, while very few studies deal with crash frequency prediction [27-30]. A 
Support Vector Machine (SVM) regression model to predict the frequency of crashes on rural roads was developed 
and compared to both a NB model and neural network model [27]. The authors concluded the SVM performed 
better than both models and they also noted that the implementation of SVM is relatively easier and faster 
compared to the other two model types. A similar analysis conducted by Dong et al. found that a neural network 
model that uses a NB model as one of its layers performs better in predicting crashes compared to both a neural 
network model without a regression layer and an SVM model [28]. In [29] it was shown that a single deep belief 
network could be trained globally with multiple datasets coming from a diverse set of roads (e.g., rural roads vs 
motorways from different regions) to predict the expected crash frequencies with a performance at least 
comparable to the traditional NB model. A multivariate, piecewise regression technique namely adaptive 
regression splines, was applied to build a crash prediction model and then, estimate CMFs based on it [30].  
 
ML models to on crash frequency prediction are very few however, available approaches include SVM models or 
some form of neural networks. Neural networks have been found more challenging to develop as they require a 
lot of training, but at the same time they might be more effective. One limitation of the ML models is that they do 
not have a parametric form and so, are seen as “black boxes” and it is hard for safety analysts to interpret these 
models and develop countermeasures. One approach is to conduct sensitivity analysis for all the explanatory 
variables and use this information for determining which factors are more influential. In [31] the authors compared 
various ML classifiers for predicting injury severity level. They conducted a sensitivity analysis to see which ones 
of the explanatory variables are more impactful on the models’ outcome. They increased the mean value of each 
explanatory variable (one variable at a time) by one standard deviation and recorded the proportion of each injury 
severity level before and after the perturbation of a variable. 

4. Discussion 

From the review it is clear that crash prediction modelling research has been very active in the last decade, and an 
extensive wealth of pertinent literature exists for exploration and exploitation by road safety practitioners. This 
section focuses on issues related to the implementation and usability of available models and the discussion aims 
to cover practical implications. 
 

4.1 Transferability 
The extend of existing research on microscopic crash prediction modeling is partially attributed to the limited 
transferability of the developed models and CMFs and so, even when calibrating the existing models to different 
conditions they have been found to have poor performance compared to newly developed models. For example, 
most of the State Departments of Transportation (DOT) in the US have developed their own (state-based) SPFs 
and CMFs instead of using the (calibrated) ones from the HSM. It was also found that when developing new 
models, safety researchers and practitioners are in favor of multivariate models, from which CMFs can also be 
estimated, e.g., the case of Pennsylvania DOT [4], the European PRACT project [32]. One limitation of the 
development of multivariate CPMs is their limited transferability. While the SPF-CMF approach can be potentially 
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transferred and calibrated, this less likely for multivariate CPMs as aspects like regression form and model 
specification are subject to change in addition to the model parameters.  
 

4.2 Model specification 
From the review it becomes evident that one of the most important aspects in crash prediction modelling, often 
not gathering the full attention of researchers and not adequately explained in relevant publications, is the rationale 
behind the choice of explanatory variables. Although largely depending on data availability (a variable cannot be 
included if there is no data for it), it is in many cases decisive for the model's performance. The inclusion of a 
variable for exposure is considered essential, as well as an assessment of the level of correlation between 
explanatory variables. 
 

4.3 Practical implications 
Crash Prediction Models are valuable tools for the road safety practitioner and decision-maker, as they effectively 
link risk factors to crashes in a quantitative way. CPMs also provide the added benefit of the proactive approach, 
i.e., identifying and improving hazardous locations before crashes occur, ultimately saving additional human lives 
and preventing injuries. Elvik (2003) identifies the use of CPMs coupled with Empirical Bayes as the most 
effective approach for safety analysis [1]. However, mainly the development of CPMs and CMFs as well as their 
implementation require advanced statistical skills let alone the data collection efforts. A recent study that reviewed 
national road authorities across Europe reported that only 30% of the involved authorities rely on CPMs for their 
safety management process [33]. Therefore, for the wider adoption of CPMs road agencies and authorities need to 
work closely with researchers and experts in statistical modeling, to better understand the applicability of CPMs 
and identify ways to select appropriate ones (e.g., crash type-specific, severity-specific, road type-specific) or 
develop new ones. Additionally, useful tools for practitioners are repositories with CMFs (CMF Clearing House) 
or (simple) modeling tools (e.g., AASHTOWare Safety Analyst [34] or Austroads Road Safety Engineering 
Toolkit [35]) have the potential to increase the adoption of CPMs.  

5. Conclusions 

This paper summarized the findings and challenges of current efforts on microscopic crash prediction models, 
focusing on road segments. More than 100 scientific papers, project report and guidelines were reviewed and 
synthesized. The most important resource on microscopic crash prediction modeling is the Highway Safety Manual 
Predictive Method however, many additional studies have been carried out to supplement it and/or address its 
limitations. While the HSM illustrates a stepwise process on the development of crash prediction models, i.e., by 
developing SPFs and CMFs, and provides a set of SPFs and CMFs for various road segments (e.g., two-lane roads, 
freeways, etc.), and provides guidelines on how to calibrate existing SPFs and CMFs, their transferability to 
different conditions is not always feasible. Researchers both in the US but also internationally have found that 
developing of new crash prediction models instead of using the HSM-based ones yields in better prediction 
performance. Therefore, at the international level, there are numerous efforts to develop multivariate crash 
prediction models and use these models to obtain CMFs. An important step during this process is related to the 
final model specification. This is data-dependent but at the same time, a combination of statistical expertise, 
engineering judgement and multiple trials are needed to conclude to the final set of explanatory variables. Paths 
for new research should focus on developing transferable models and assessing the transferability of existing 
multivariate models, while it is of equal importance to develop guidelines for using machine learning models for 
crash analysis.  
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