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Abstract 

 

Within a transport system, a driver can be viewed as a (technology assisted) human operator, self-regulating control 

over  

a vehicle in the context of crash avoidance. Based on the Fuller’s task capability model, a Safety Tolerance Zone 

(STZ) concept has been recently developed in the i-DREAMS naturalistic driving study attempting to describe the 

point at which self-regulated control is considered safe. This paper aims to explicitly present the practical 

conceptualization of the STZ in order to transition from a theoretical framework to a practical implementation and 

a fully functional methodology. A thorough literature review of analytical models dealing with driver behavior 

and collision risk, both in real-time and post-trip, is first conducted and the most suitable modelling approaches 

for the STZ are selected. Specific machine learning algorithms and statistical models are then examined in order 

to relate driving performance with the probability of a rare event and the crash severityamong which, the most 

prominent approaches were initially found to be Dynamic Bayesian Networks (DBNs; a probabilistic graphical 

time-series model) and Long Short-Term Memory networks (LSTMs; a deep neural network formulation). 

Furthermore, Structural Equation Models (SEMs) and Discrete Choice Models (DCMs) were also deemed suitable 

for the i-DREAMS concept, providing ‘static’ or post-trip predictions, in contrast with DBNs and LSTMs which 

work dynamically (i.e. in real-time). For each of the aforementioned methods or techniques, a brief description of 

their underpinning procedure was presented, followed by their application for the identification of the STZ levels. 

The testing, calibration and enhancement of the mathematical models during the i-DREAMS simulation and on-

road experiments can assure a sufficient and efficient data analysis, as well as timely initiation of the safety 

interventions. 
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1. Introduction 

Within a transport system, a driver can be viewed as a (technology assisted) human operator, self-regulating control 

over a vehicle in the context of crash avoidance. Based on the Fuller’s task capability model [2, 3], driving 

difficulty is inversely related to the difference between driving task demand and the driver’s task capability. As a 

result, safe driving can be regarded as the practice of using driving strategies that minimize the risk on the road 

and thus help avoiding critical events (e.g. crashes) by predicting hazardous situations on the road. Conversely, 

dangerous driving is found when an individual’s driving falls below the expected level of a careful and competent 

driver [1]. It can also be classed as dangerous driving scenarios where the vehicle being driven is in a dangerous 

condition and not suitable to be on public roads. It is worth noting that traffic safety conditions involve the quality 

of the road defined by the level of crashes and reflecting the degree of safety of traffic participants from road traffic 

crashes as well as their consequences. At the same time, road traffic safety can be understood as the result of the 

safe interaction of participants between themselves and the environment. Thus, when assessing the traffic safety 

on the road environment, driver's physiological and psychological capabilities should be taken into consideration. 

 

The i-DREAMS naturalistic driving study project aims to establish a framework for the definition, development, 

testing and validation of a context-aware safety envelope for driving in a Safety Tolerance Zone (STZ), within a 

smart Driver, Vehicle and Environment Assessment and Monitoring System (i-DREAMS). Taking into account 

driver background factors and risk indicators associated with the driving performance as well as the driver state 

and driving task complexity parameters, a continuous real-time assessment will be made in order to monitor and 

determine if drivers are within acceptable boundaries of safe operation. Furthermore, delayed safety-oriented 

interventions and post-trip feedback aimed at enhancing the knowledge, attitudes and perceptions will be provided.  

 

The concept of the STZ is the core concept of the i-DREAMS project2 and attempts to describe the point at which 

self-regulated control is considered safe. It is based on Fuller’s Task Capability Interface Model [2, 3] which states 

that loss of control occurs when the demand of a driving task outweighs the operator’s capability. The STZ is 

subdivided in three levels of safety, namely: the ‘Normal Driving phase’, the ‘Danger phase’ and the ‘Avoidable 

Accident phase’. The Normal Driving phase represents the conditions in which a crash is unlikely to occur, i.e. the 

crash risk is low. During this phase, drivers can successfully adapt their behaviour in order to meet the task demand. 

The Danger phase is characterized by changes in normal driving that indicate that a crash may occur, therefore, 

the crash risk is increased. Finally, the Avoidable Accident phase occurs when a collision scenario develops but 

there is still time for the driver to intervene and avoid the crash. The need for action is more urgent than in the 

Danger phase and if the driver does not adapt their behaviour to the current circumstances, a crash is very likely 

to occur. The different driving phases of the STZ along with their definition are summarized in Table 1.  

 

Table 1: Different driving phases of the Safety Tolerance Zone (STZ) 

 

Phases of STZ Description 

Normal Driving phase Crash risk is minimal 

Danger phase Risk of crash increases as internal / external events occur 

Avoidable Accident phase Crash is very likely to occur if no preventative action taken by driver 

 

The fundamental goal of the i-DREAMS platform is to keep the driver in the Normal Driving phase for as long as 

possible and, where this is not possible, to prevent the transition from the danger to the Avoidable Accident phase. 

To this end, the platform combines both real-time and post-trip interventions which, respectively, aim to nudge 

and coach the driver. It is worth mentioning that the platform is a warning based driver assistance system which 

does not actively intervene physically in any way with the driving task. In order to estimate in which STZ phase 

the driver is in and which interventions should be provided, the i-DREAMS platform uses two modules. Firstly, it 

uses the monitoring module, which takes measurements related to the context, the operator and the vehicle in order 

to derive the demands of the driving task and the driver's ability to cope with these demands. This module estimates 

at which stage of the STZ the driver is operating at any given time. Secondly, the in-vehicle intervention module 

is responsible for keeping the driver within the Normal phase of the STZ, either by providing a warning or alert 

during the trip (i.e. real-time intervention) or by providing feedback about the journey after the completion of the 

driving task (i.e. post-trip intervention). 

                                                                 
2 Further general project information can be found on the website: https://idreamsproject.eu/ 

https://idreamsproject.eu/
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It should be noted that data analysis consists a pivotal part of this project for achieving its objectives as well as the 

methods for data analysis highly depend on the collected data. In order to model the STZ, the available data and 

the potential outcomes of the model need to be considered. For suggesting a positive outcome, the data to be used 

as input for the model will be available not only in real-time but also post-trip and the measurements of task 

complexity (e.g. weather, road layout, time of the day) and coping capacity (e.g. distraction, fatigue, drowsiness) 

are going to be sequential. Moreover, as the STZ is the “trigger” for real-time and post-trip interventions, both 

dynamic and static modeling approaches need to be examined. 

 

This study aims to explicitly describe the practical conceptualization of the STZ in order to transition from a 

theoretical framework to a practical implementation and a fully functional methodology. In order to fulfil the 

purpose of this research, the most suitable mathematical models to realize the STZ, applied in the i-DREAMS risk 

analyses, both from a real-time and post trip perspective are provided. The paper is structured as follows. In the 

beginning, the overall objective of the i-DREAMS project and the aim of the current research is presented. Then, 

the most prominent approaches are detailed and a brief description of their underpinning procedure is given. 

Subsequently, initial insights into analyses are highlighted. Lastly, overall conclusions and practical considerations 

concerning the modelling of the STZ are provided in order to assist practitioners and researchers. 

2. Methodology 

To date, predicting driving behavior by employing mathematical driver models, obtained directly from the 

observed driving-behavior data, has gained much attention [4]. A few models have been used to address road 

safety and the estimation of driving behavior, many of which in the context of experimental studies, including 

naturalistic driving or field operational trials and driving simulator studies. A review of safety models can be found 

in [5], where the authors noted inconsistency in the language of safety models and emphasized that additional 

factors should be investigated, such as the effect of organizational culture, emergency responses, the health system 

and economic influences on-road safety. In their opinions, there are models with potential to improve road safety, 

but yet to be applied.  

 

In order to obtain the most suitable modeling approaches for the STZ, a thorough literature review of models 

dealing with driver behavior and collision risk, both in real-time and post-trip, was implemented. Several state-of-

the-art methodological approaches that enable the modeling of crash risk were evaluated. In addition, specialized 

machine learning and statistical algorithms were examined in order to relate driving performance with the 

probability and the severity of a crash, among which four methods have been selected to be used in i-DREAMS: 

Dynamic Bayesian Networks (DBNs), Long Short-Term Memory (LSTMs) deep neural networks, Discrete Choice 

Models (DCMs) and Structural Equation Models (SEMs). Each of the aforementioned methods had strengths and 

limitations, making them suitable for a certain purpose in the project. Based on the methodological background, 

an attempt was made to transform the model approach into a suitable structure. The key output is expected to be 

the correlation of the explanatory variables and various indicators of task complexity and coping capacity with the 

dependent variable risk. Figure 1 provides the flowchart of the proposed approach. 
 

 
 

Figure 1: Flowchart of the proposed approach 
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3. Results 

This section provides the mathematical formulation of the STZ model according to these popular methodologies, 

in order to provide flexibility in the practical implementation of the STZ estimation algorithm. To this end, a brief 

description of each algorithm is presented, followed by an explicit description of the proposed models. 

3.1 Dynamic Bayesian Networks (DBNs) 

Dynamic Bayesian Networks (DBNs) are the most appropriate method to model discrete indicators of risk. A DBN 

is a directed acyclic graphical model that can express a joint probability distribution of a large set of variables [6]. 

Usually, DBNs are utilized for learning causal relationships and hence are ideal for investigating the effect of 

interventions by combining new and prior knowledge data. The core of DBNs is the attempt to infer a “hidden” 

state based on a group of available observations. 

 

The variables monitored by the i-DREAMS platform concerning task complexity and coping capacity (i.e. driver 

and vehicle state); thus the raw sensor measurements are observed. By filtering these raw measurements, the 

Context-Operator-Vehicle (COV) indicators become available, so they are used to determine the coping capacity 

and task complexity at each time moment. Hence, the two layers of task complexity and coping capacity depend 

on the COV indicators. Finally, as the operator’s capacity indicates the ability of the driver to operate safely with 

regards to the task imposed, the operator’s capacity depends on the complexity of the task.  

 

The proposed DBN structure along with the proposed characteristics to estimate task complexity and coping 

capacity is depicted in Figure 2. 

Task 
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Coping 
Capacity
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Sensors

Task 
Demand

Coping 
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behaviour, Objective Risk
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Interventions
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Figure 2: The proposed DBN for STZ modeling 

 

The proposed DBN can be described by the joint distribution: 

 

𝑃(𝑇𝐶0:𝑇, 𝐶𝐶0:𝑇, 𝐹𝑀0:𝑇, 𝑍0:𝑇)

= 𝑃(𝑇𝐶0, 𝐶𝐶0, 𝐹𝑀0, 𝑍0) ∏ 𝑃(𝑇𝐶𝑡|𝑇𝐶𝑡−1𝐹𝑀𝑡−1) 𝑃(𝐶𝐶𝑡|𝑇𝐶𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1) 𝑃(𝐹𝑀𝑡|𝐹𝑀𝑡−1𝑇𝐶𝑡𝐶𝐶𝑡𝐶𝐶𝑡−1)𝑃(𝑍𝑡|𝐹𝑀𝑡) 
  

𝑇

𝑡=1

 

𝑡 ∈  ℕ 𝑎𝑛𝑑 𝑡 ≤ 𝑇         (1) 

 

where TC refers to task complexity, CC refers to coping capacity, FM is filtered COV measurements, Z is raw 

measurements, t is current time step and T is total time of measurements. 
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Task Complexity: The expected task complexity 𝑃(𝑇𝐶𝑡|𝑇𝐶𝑡−1𝐹𝑀𝑡−1) is derived from the previous task 

complexity and the available indicators on environment variables (i.e. time of day, wipers on/off, low visibility 

indicator, road environment, road geometric configuration and traffic density). 

 

𝑃(𝑇𝐶𝑡|𝑇𝐶𝑡−1𝐹𝑀𝑡−1) = 𝑓(𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑇𝐶𝑡−1)  (2) 

 

Coping Capacity: Coping capacity 𝑃(𝐶𝐶𝑡|𝑇𝐶𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1) can be estimated through functions that correlate the 

effect of task complexity on coping capacity [7] modified by a factor to take the previous coping capacity into 

account. 

 

𝑃(𝐶𝐶𝑡|𝑇𝐶𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1)= 𝑓(𝐷𝑟𝑖𝑣𝑒𝑟, 𝑇𝐶𝑡 , 𝐶𝐶𝑡−1)    (3) 

 

Filtered Measurements: 𝑃(𝐹𝑀𝑡|𝐹𝑀𝑡−1𝑇𝐶𝑡𝐶𝐶𝑡𝐶𝐶𝑡−1) is the probability of the indicator values based on the 

current task complexity and coping capacity, as well as their previous values and the previous coping capacity, 

can be mapped based on the specific scenarios that will be tested in the simulators. In that way, specific ranges of 

values or task complexity - and coping capacity-specific measurements along with their corresponding 

probabilities of appearance can be identified. 

 

Raw measurements: For the probability of the raw measurements 𝑃(𝑍𝑡|𝐹𝑀𝑡) a sensor model based on 

Agamennoni et al. [8], and the Student t-distribution can be followed. 

 

In order to identify the different STZ levels, a comparison between the layers of task complexity and coping 

capacity will be made. The following probability is proposed to be inferred in order to identify Avoidable Accident 

or Dangerous STZ levels. It should be mentioned that this probability refers to situations that task complexity and 

coping capacity are beyond normal operations (i.e. increased or high task complexity with decreased or low coping 

capacity) given the available sensor observations.  

 

P(TC ≠normal ∪ CC ≠normal |Sensors)     (4) 

 

The likelihood function for Bayesian Networks is the same as in the frequentist inference. More specifically, 

 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑖 = 𝜋(𝑥𝑖)𝑦𝑖(1 − 𝜋(𝑥𝑖))(1− 𝑦𝑖)      (5) 

 

where 𝑥𝑖 is the covariate vector, π(𝑥𝑖) is the probability of the event for the 𝑖th subject which has covariate vector 

𝑥𝑖 and 𝑦𝑖 is the multiple dependent variable representing the risk probability which has the outcomes y=0 (STZ: 

Normal Phase), y=1 (STZ: Dangerous Phase) and y=2 (STZ: Avoidable Accident Phase) 

 

The logistic regression equation is: 

 

log (
𝑝

1−𝑝
) = 𝛽0 +  𝛽1𝑥1  +  ⋯ + 𝛽𝑛𝑥𝑛           (6) 

 

where 𝛽0 is the intercept and 𝛽𝑖 is a coefficient for the explanatory variable 𝑥𝑖 

3.2 Long Short-Term Memory Networks (LSTMs) 

Long Short-Term Memory Networks (LSTMs) are suitable for continuous indicators of risk. These models are a 

special kind of Recurrent Neural Network (RNN), capable of learning long-term dependencies [9]. They work 

tremendously well on a large variety of problems, and are now widely used. LSTMs are explicitly designed to 

avoid the long-term dependency problem. Remembering information for long periods of time is practically their 

default behavior and not something they struggle to learn. All recurrent LSTMs have the form of a chain of 

repeating modules of neural network. 

 

LSTMs use “memory block” in the hidden unit to capture the long-term dependencies that may exist in the data 

[10]. This memorizing capability of LSTM has shown the best performance across many time-series tasks, such 

as activity recognition, video captioning and language translation. The cell state (memory block) of LSTM has one 

or more memory cells that are regulated by structures called gates, which control the addition of new sequential 

information and the removal of useless ones to and from memory, respectively. Gates are a combination of sigmoid 

activation functions and a dot (scalar) multiplication operation, and they are used to control information that passes 

through the network. 
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The problem of defining the STZ levels becomes more straightforward, since LSTMs as a sub-category of Deep 

Neural Networks act like “black-boxes” [11] and thus the only input that needs to be provided to the model are 

labelled time series data.  

 

The proposed approach using LSTMs is given in Figure 3. 
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Figure 3: The proposed LSTM for STZ modeling 

3.3 Discrete Choice Models (DCMs) 

Discrete Choice Models (DCMs) are the most common statistical approaches to model discrete indicators of risk. 

These models rely on the maximum utilisation theory in economics [12] stating that among many alternatives, 

individuals select the alternative (i.e. discrete category) that maximises their utility. Thus, the first step in 

formulating DCMs is defining a utility for each discrete alternative. This utility will not have a physical meaning 

but is rather an auxiliary term to determine the probability of selecting an alternative over the other alternatives. 

Depending on the nature of the discrete variable being nominal (e.g. occurrence of a rare event/no rare event) or 

ordered (i.e. STZ levels), DCMs can take the form of either unordered or ordered. 

 

3.3.1 Unordered Discrete Choice Models 

 

Let 𝑌 be a discrete dependent variable with s nominal multiple categories (e.g. s=0: high crash severity, s=1: 

medium crash severity, s=2: low crash severity). The utility of the sth category (Us) is stated as: 

 

𝑈𝑠 = 𝛽𝑠𝑋𝑠 + 𝜀𝑠       (7) 

 

where 𝛽𝑠  are estimable parameters (including the intercept), 𝑋𝑠  are explanatory variables (e.g. sociodemographic 

factors, vehicle type, etc.) and εs is the random error term assumed to be identically and independently distributed 

across observations and describing the random part of the utility. Assuming that εs is generalised extreme value 

distributed [13], the probability of the sth category can be presented as: 

 

𝑃(Y = 𝑠 ) =  
𝑒(𝛽𝑠𝑋𝑠)

∑ 𝑒
(𝛽𝑗𝑋𝑗)𝑆

𝑗=1

   (8) 
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The likelihood of occurring the sth category across all individuals can then be determined by the product of the 

above equation over the entire observations. This model is referred to as the multinomial logit discrete choice 

model in the statistical and econometrics literature [12]. 

 

When the dependent variable has only two categories (s=2), the above model reduces to the binary logit model. 

This model can be used to determine the probability of a rare event (e.g. a near-miss). Additional variants of this 

model such as Integrated Choice and Latent Variable (ICLV) binary logit model may also be useful depending on 

the hypothesis between risk, task complexity and coping capacity. 

 

3.3.2 Ordered Discrete Choice Models 

 

Let 𝑌 be a discrete dependent variable with s ordered categories (e.g. S = 1 if Normal Driving phase, 𝑆 = 2 if 

Dangerous phase, and 𝑆 = 3 if Avoidable Accident phase). In ordered discrete choice models, the actual category 

of the dependent variable (𝑌𝑠) is associated with an underlying latent variable (𝑌𝑠
∗). This latent variable is then 

mapped to the actual categories by thresholds ( ) and using the following linear function: 

 

𝑌𝑠
∗ = 𝜅𝑋𝑠 + 𝛿𝑖   and    𝑌𝑠 = 𝑆   if   𝜏𝑠−1 < 𝑌𝑠

∗ < 𝜏𝑠   (9) 

 

where 𝜅 is the vector of parameters, 𝑋𝑠 is the vector of covariates for the sth category and 𝛿𝑖 is the random error 

term. To estimate the latent propensity of the dependent variable, it is assumed that: 

 

𝐸(𝑌𝑠|𝑋𝑠) = 𝐻𝑠(. ),  0 ≤ 𝐻𝑠(. ) ≤ 1,   ∑ 𝐻𝑠
𝑆
𝑠=1 = 1   (10) 

 

where 𝐻𝑠(. ) is the probability density function for the discrete category s. Depending on the distributional 

assumption for the probability of error terms, 𝐻𝑠(. ) can take standard normal or standard logistic probability 

density functions for the ordered probit or ordered logit discrete choice models, respectively. Similar to the 

unordered models, additional variants of this model such as such as Integrated Choice and Latent Variable (ICLV) 

ordered probit (logit) model may also be useful depending on the hypothesis between risk, task complexity and 

coping capacity. 

3.4 Structural Equation Models (SEMs) 

Structural Equation Models (SEMs) are suitable for continuous indicators of risk. These models represent a natural 

extension of a measurement model and establish a mature statistical modelling framework [14]. In particular, they 

are designed to deal with several difficult modelling challenges, including cases in which some variables of interest 

to a researcher are unobservable or latent and are measured using one or more exogenous variables, endogeneity 

among variables, and complex underlying social phenomena. SEMs are widely used for modelling complex and 

multi-layered relationships between observed and unobserved variables. Observed variables are objectively 

measurable, whereas unobserved variables are latent constructs - analogous to components in a factor/principal 

component analysis. SEMs have two components: a measurement model and a structural model. The measurement 

model is used to determine how well various observable exogenous variables can measure (i.e. load on) the latent 

variables, as well as the related measurement errors. The structural model is used to explore how the model 

variables are inter-related, allowing for both direct and indirect relationships to be modelled. In this sense, SEMs 

differ from ordinary regression techniques in which relationships between variables are strictly. 

 

According to the i-DREAMS concept of the STZ, it is hypothesized that latent risk is measured by a composite 

variable consisting of all risk factors (e.g. Y:fatigue, loss of sleep, hands on wheel or mobile phone use, speeding, 

harsh acceleration, harsh deceleration, harsh cornering, lane departure warning, illegal overtaking warning, 

forward collision warning, vulnerable road user warning), and latent task complexity and latent coping capacity 

predict the latent risk. Latent task complexity and latent coping capacity are also measured by observed indicators.  

 

The proposed path diagram using SEM is provided in Figure 4. 
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Figure 4: The proposed SEM for STZ modeling 

 

SEMs are estimated using ordinary least squares (OLS) approach. Let 𝑌𝑖 be a continuous indicator of risk. A 

structural equation modelling approach is used to correlate this dependent variable to the independent variables. 

As previously mentioned, the SEM consists of two components: a structural equation and measurement equations. 

The structural equation is a regression model capturing the relationship between variables: 

 

𝑌𝑖 = 𝛽𝑋𝑖 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝜀𝑖   (11) 

 

where 𝛽𝑖 are estimable parameters (including the intercept), 𝑋𝑖  are explanatory variables (e.g. demographics, 

coping capacity and task complexity) and εi is the random error term assumed to be normally distributed across 

observations and describing the random part of the structural equation. 

 

The measurement equations, on the other hand, are concerned with how well various measured exogenous 

indicators measure latent variables. In other words, and in estimating the above structural equation, the latent 

variables (e.g. latent risk, latent task complexity, latent coping capacity) can be measured (i.e. measurement 

equation) using a linear additive combination of certain observed indicators. However, many of these indicators 

often have high autocorrelation with one another.  

 

To address this problem, the Principal Component Analysis (PCA) can be used to summarise the observed 

indicators into orthogonal variables (i.e. principal components) that are not correlated. The PCA creates a set of 

new variables, referred to as principal components (PC), each of which is a linear and orthogonal combination of 

the original variables in such a way that each orthogonal combination captures the maximum variability in the 

original set of variables and has the minimum autocorrelation with other linear combinations. For instance, further 

explanations with regards to the combinations are shown below: 

 
𝑃𝐶𝑟𝑖𝑠𝑘 = 𝑤𝐾𝑆𝑆𝐾𝑆𝑆 + 𝑤𝐿𝑂𝑆𝐿𝑜𝑠𝑠 𝑜𝑓 𝑆𝑙𝑒𝑒𝑝 + 𝑤𝐻𝑊ℎ𝑎𝑛𝑑𝑠 𝑜𝑛 𝑤ℎ𝑒𝑒𝑙 + ⋯  (12) 

𝑃𝐶𝐶𝑜𝑝 = 𝑤𝑎𝑡𝑡𝐴𝑇𝑇 + 𝑤𝑎𝑔𝑟𝑒𝑠𝑠𝐴𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 + 𝑤𝑆𝑁𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑁𝑜𝑟𝑚𝑠 + ⋯  (13) 

𝑃𝐶𝑇𝑎𝑠𝑘 = 𝑤𝑊𝑃𝑊𝑖𝑝𝑒𝑟𝑠 + 𝑤𝑑𝑎𝑦𝐷𝑎𝑦 𝑇𝑖𝑚𝑒 + 𝑤𝑣𝑖𝑠𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 + ⋯   (14) 

 

where 𝑤𝑛 are weights (i.e. factor loadings) can be obtained by applying the orthogonal transformation and finding 

the Eigenvectors and Eigenvalues of the Spearman correlation matrix of the original set of explanatory variables. 

 
The principal components are then arranged based on their decreasing contribution to the total variance of the 

original set of explanatory variables: the first principal component explains the highest variability in the 

explanatory variables; the second principal component explains the second-highest variability in the explanatory 

variables, and so forth (the cumulative contribution of all principal components is equal to one). These principal 

components can then be used in the analysis as indicators of the original latent variables. The number of principal 

components to be used in the model depends on the specific research objective, though the common practice is to 

use all principal components with Eigenvalues greater than one [15]. Assuming that εi is normally distributed, the 

structural equation can be estimated using generalised least squares or maximum likelihood estimation approaches. 



Michelaraki et al. / RSS2022, Athens, Greece, June 08-10, 2022 

9 

4. Discussion 

A variety of analytical methods and potential modeling approaches has been reviewed, among which four methods 

have been selected to be used in i-DREAMS: Dynamic Bayesian Networks (DBNs), Long Short-Term Memory 

(LSTMs) deep neural networks, Discrete Choice Models (DCMs) and Structural Equation Models (SEMs). Each 

of the aforementioned methods has strengths and limitations, making it suitable for a certain purpose in the project. 

Based on the methodological background, an attempt was made to transform the model approach into a suitable 

structure. The key output is expected to be the correlation of the explanatory variables and various indicators of 

task complexity and coping capacity with the dependent variable risk. 

 

When the purpose of data analysis is the prediction of risk (e.g. prediction of the STZ phases), the data should be 

analyzed in real-time because the predictions in i-DREAMS aim to provide the basis for triggering (real-time) in-

vehicle interventions. Prediction of risk after the trip has completed may not be useful in i-DREAMS. As such, the 

arrow of the post-trip analysis has been turned off for the prediction purpose. 

 

Machine learning algorithms are found to be proper analytical methods for real-time data analysis. However, the 

type of these algorithms to be used certainly depends on the type of risk indicators being discrete or continuous. 

The Dynamic Bayesian Network models are suitable for prediction of discrete indicators of risk, while the Long 

Short-Term Memory and deep neural networks are suitable for prediction of continuous risk. Such a continuous 

indicator of risk may be the result of combining discrete indicators of risk for different risk factors (which will 

help validate STZ) or may be the time that is spent in each phase of STZ (which will help tuning the 

frequency/pitch/presentation of warnings). Although some types of statistical models such as the Dynamic Discrete 

Choice Models (DDCM) may be a good alternative for prediction of discrete indicators of risk, they are prone to 

big data (i.e. data in real-time) and so their applicability needs to be confirmed via empirical testing. 

 

When the purpose of data analysis is explanatory analysis, the data should be analyzed after the trip has been 

completed, because the explanatory analysis in i-DREAMS is primarily done for identifying relationships between 

driving behavior (at an aggregate level) and risk. As such, the arrow of real-time is for now turned off for 

explanatory analysis. However, there may be sufficient motivation for investigating this turned-off arrow for 

scientific research. For example, investigating the inter-relationship between risk and coping capacity in real-time 

and finding whether such an inter-relationship can influence real-time predictions could be another research 

direction. 

 

Statistical models are suitable for explaining the underlying mechanisms of risk and so are proper analytical 

methods for post-trip data analysis. However, the type of statistical models to be used depends on the type of risk 

indicators too. Structural Equation Models (SEMs) are only suitable for continuous dependent variables i.e. risk 

indicators. They are estimated using ordinary least squares (OLS) approach (the equivalent of SEM in maximum 

likelihood estimation approach is referred to the latent variable models). When the dependent variable is discrete, 

Discrete Choice Models (ordered or nominal) are needed. 

 

While this literature review provided a good understanding of the potential modeling candidates in i-DREAMS 

and the selected models seem plausible, there are still some open issues that need to be considered for model 

selection. Specifically, the suggested models may be confronted with additional limitations considering the 

different types of data being collected in i-DREAMS. Additionally, several new limitations have been identified 

with additional deeper investigations into these models. For instance, it is noted that LSTM is not able to 

incorporate the inter-relationship between variables into real-time predictions (endogeneity) and SEM is not 

suitable for analyzing discrete dependent variables.  

 

As a result, and prior to further applying the selected mathematical models, it seems necessary to map these models 

to the research questions in i-DREAMS. The mapping of the models to research questions depends on three 

dimensions for data analysis in i-DREAMS: (1) the purpose of data analysis –being prediction or explanatory 

analysis, (2) the time element of data analysis –being real-time or post-trip, and (3) the variable type of risk 

indicators –being discrete or continuous (as it may be necessary to test alternative definitions of risk in addition to 

the three-level STZ definition). The mathematical model to be used in i-DREAMS depends on a combination of 

these three dimensions. 

 

All in all, considering risk as a dependent variable in i-DREAMS, the type of mathematical model to be used for 

data analysis highly depends on the definition of risk adopted in each case. A schematic overview of the proposed 

mathematical models (DBN, LSTM, DCM and SEM) to be considered for the analysis is given in Figure 5. 
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Figure 5: Schematic overview of modeling approaches considered for the analysis of risk factors 

5. Conclusions 

The aim of the current research is to present the practical conceptualization of the STZ in order to transition from 

a theoretical framework for operational design into a practical implementation and a fully functional methodology 

of the STZ concept. Four different methodological formulations were proposed to turn the available measurements 

into meaningful information on the level of driving safety. Τhe most prominent approaches that can model driving 

behavior and recognize the three phases of the STZ were initially found to be Dynamic Bayesian Networks (DBNs; 

a probabilistic graphical time-series model) and Long Short-Term Memory networks (LSTMs; a deep neural 

network formulation), due to their efficiency and flexibility in real-time predictions. Furthermore, Discrete Choice 

Models (DCMs) and Structural Equation Models (SEMs) were also deemed suitable for the i-DREAMS concept, 

providing ‘static’ or post-trip predictions, in contrast with DBNs and LSTMs which work dynamically (i.e. in real-

time). For each of the aforementioned methods or techniques, a brief description of their underpinning procedure 

was presented, followed by their application for the identification of the STZ levels. 

 

Undoubtedly, it is not possible to specify the exact hypotheses behind the variables of interest without looking at 

the data. As a result, for all the proposed approaches, a labelled dataset is needed for training and this should be 

taken into consideration for the data collection. The effort, however, is that the details of all potential analytical 

models to be used (e.g. dependent and independent variables and the hypothesis about their relationship as well as 

the unit of analysis and model specifications) are documented so that the actual data analysis can start as soon as 

the data become available. Thus, the testing, calibration and enhancement of the mathematical models during the 

i-DREAMS simulation and on-road experiments can assure a sufficient and efficient data analysis, as well as 

timely initiation of the safety interventions. When preliminary results are available, the most crucial risk indicators 

of task complexity and coping capacity will be extracted, the proposed models will be tested and the suitable 

models will be selected for data analysis. 
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