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Abstract 

 

This paper tries to identify and investigate the most significant factors in the entire 2020 that influenced the 

relationship between the COVID-19 pandemic metrics (i.e., COVID-19 cases, fatalities and reproduction rate) and 

restrictions (i.e., stringency index and lockdown measures) with driving behaviour. To that aim, naturalistic driving 

data for a 12-month timeframe were exploited and analyzed. The examined driving behaviour variables were harsh 

acceleration events and harsh braking events concerning a time period before, during and after the lockdown 

measures in Greece. The harsh events were extracted using data obtained by a specially developed smartphone 

application which were transmitted to a back-end telematic platform between 1st of January and 31st of December, 

2020. Based on the collected data, XGBoost feature analysis algorithms were deployed in order to obtain the most 

significant factors. Furthermore, a comparison among the first COVID-19 lockdown (i.e., February to May 2020), 

the second one (i.e., August to November 2020) and the period without COVID-19 restrictions was drawn. Results 

revealed the impact of COVID-19 metrics and restrictions on driving behaviour and the indisputable relation with 

other factors (i.e., distance travelled, mobile use, driving requests, driving during risky hours). Furthermore, the 

differences and similarities of the harsh events between the two lockdown periods were identified. This paper tries 

to fill this gap in existing literature concerning a feature analysis for the entire 2020 and including the first and 

second lockdown restrictions of the COVID-19 pandemic in Greece. 
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1. Introduction 

The COVID-19 pandemic has affected human patterns since December 2019 [1] and continues incessantly for 

more than two years since the beginning. Right from the beginning, many countries around the world imposed 

strict measures, such as lockdown and suspension of all non-essential movements, in order to reduce human 

activity which contributes to the spread of the pandemic. In this direction, many studies seek to explore the 

dynamics of the pandemic in several countries around the world to understand the impact that COVID-19 had on 

the transport sector [2]. The restriction measures affected typical patterns of travel activities and mobility in urban 

regions across the world [3]. In the Netherlands, people reduced their outdoor activities due to the pandemic, 

leading to a decrease in the total number of trips and reduction in distance travelled, with an increase in the 

proportion of people working from home [4].  

 

Existing studies have shown that there was a major change in the choice of transport mode, especially at the first 

pandemic wave, and consequently a change in the number of car-driven volumes was observed [5]. Following the 

restrictive measures taken by governments to restrict the spread of the disease, an unprecedented decline in traffic 

volumes has been identified [6], [7].  

 

In the context of road safety, during the COVID-19 lockdown measures, the number of road collisions, injuries, 

and fatalities has significantly decreased, especially during the first lockdown period. In particular, in the Spanish 

province of Tarragona, a sharp decrease in traffic crashes was revealed [8]. Similarly, Carter [9] showed that during 

the first COVID -19 period (i.e., from March 15, 2020 to May 16, 2020), the total number of crashes in North 

Carolina decreased by half, fatalities decreased by 10%, and serious injuries increased by 6%, compared to the 

pre-closure baseline. This can probably be attributed to the aforementioned general reduction in traffic volumes 

[10]. A relevant study [11] indicated that traffic crashes, including injury and fatality crashes, decreased on state 

highways and rural roads. Nevertheless, a more profound study used time-series to predict the road collisions, 

injuries and fatalities that would have been observed without the existence of the COVID-19 pandemic. Predictions 

made clear that the reduction of fatalities and injuries was disproportionate taking into account and comparing the 

reduction in traffic volumes [10]. 

 

Driving behaviour has also changed during the pandemic which therefore has a great impact on road safety. Many 

studies have reported a change in driving behaviour indicators [7], [12], [13]. According to this study [7], by 

exploiting driving data from the first lockdown period in Greece and Saudi Arabia, increased driving speed (6-

11%) was noted, with more frequent harsh accelerations and brakings per distance. Nevertheless, very few studies 

investigated driver behaviour more profoundly by analyzing and modeling driving data [12]. This innovative study 

quantified the impact of the pandemic COVID-19 on driving behaviour using SARIMA time series modeling. The 

results showed that the observed values of three indicators of driving behaviour (i.e., average speed, speeding, and 

harsh braking per 100 km) were higher than the predicted values based on the corresponding observations before 

the first lockdown period in Greece. Moreover, in the same study, a machine learning (ML) approach of XGBoost 

was deployed to identify the most influential COVID-19 indicators. 

 

In this direction, the current study aims to identify and investigate the most significant factors in the entire 2020 

that influenced the relationship between the COVID-19 pandemic metrics (i.e., COVID-19 cases, fatalities and 

reproduction rate) and restrictions (i.e., stringency index and lockdown measures) with driving behaviour. For this 

purpose, naturalistic driving data for a 12-month timeframe were exploited and analyzed. The examined driving 

behavior variables were harsh acceleration and harsh braking events concerning a time period before, during and 

after the lockdown measures in Greece. The motivation is to cover the literature gap by giving insights on these 

two driving behaviour indicators and how they varied for the entire 2020. A cross-lockdown comparison was also 

provided insights into how they varied across the examined conditions (i.e., no restrictions, 1st lockdown, 2nd 

lockdown). 

 

The paper structure is presently briefly: at the beginning, literature findings with regards to mobility, traffic 

volumes, road safety and driving behaviour change during the COVID-19 pandemic are reviewed. Subsequently, 

the methodology section follows overviewing the obtained dataset for this study, descriptive statistics of the 

examined variables, COVID-19 restriction measures and the chosen ML technique background are presented. 

Then, the analysis results are provided which are divided it into two subsections for each model: i) harsh 

acceleration events ii) harsh braking events. Finally, the main findings, conclusions for further research and 

recommendations are also highlighted.  
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2. Methodology 

2.1 Data Overview 

In order to correlate driving behaviour with COVD-19 metrics and restrictions, OSeven provided a random dataset 

with naturalistic driving trips from its database. The time span of the database was from 01/01/20120 to 31/12/2020 

and included thousands of trips throughout Greece. The aforementioned one-year dataset contains data before-

during-after the appearance of COVID-19 (the first COVID-19 case in Greece was diagnosed on 26/02/2020) and 

two lockdown restriction measures for non-essential movements. OSeven exploits data from smartphone sensors 

(e.g. GPS, accelerometer data, and gyroscope data) using the smartphone applications and platform developed by 

OSeven Telematics (oseven.io). For each trip completed, a large amount of data was recorded, transmitted through 

Wi-Fi or cellular network and valuable critical information such as features, highlights and driving scores was 

produced in order to evaluate driving profile and performance. Subsequently, data were sent to the OSeven 

backend infrastructure where there were evaluated using filtering, signal processing, ML algorithms and safety/eco 

scoring models. Five dedicated variables (i.e., harsh accelerations (HA) /100km, harsh brakings (HB) /100km, 

mobile use/ driving time, driving during risky hours, distance) were exploited from the OSeven dataset and their 

explanation can be found in Table 1. The OSeven platform has clear privacy policy statements and follows strict 

information security procedures, in compliance with the General Data Protection Regulation (GDPR) and related 

EU directives. Thus, all data has been provided by OSeven in a completely anonymized format and no geolocation 

information for the trips has been included in the dataset.  

 

Apart from the OSeven dataset which provided a total of approximately 305,000 trips (randomly chosen) and in 

order to correlate them with COVD-19 metrics and restrictions, other three datasets with daily observations were 

exploited. One dataset was the dataset of Our World in Data, 2020 (OWD) which was exploited in order to capture 

the daily evolution of COVID-19 metrics in 2020 i.e., new cases, new fatalities, the COVID-19 reproduction rate 

of the pandemic. 

 

The response measures of the Greek government were quantified with an index called the “Stringency Index”. 

This index was obtained and calculated by Oxford University. This index is open access and can be found in the 

COVID-19 government response tracker [15], [16]. Specifically, the stringency index ranges between 0 and 100 

and represents the government response stringency index and composite measure based on 9 response indicators 

including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (i.e., 100 = 

strictest response).  

 

In order to be able to provide an overview of the COVID-19 impact on driving patterns, the mobility data reports 

from Apple [17] were used and specifically the driving requests as a surrogate measurement of the traffic mobility. 

The aggregated data collected from Apple Maps and show the mobility trends for major cities and several countries 

or regions. The information is generated by aggregating the number of daily driving requests made by the Apple 

Maps users who requested navigation. These requests are expressed by the percentage change compared to a 

baseline of 100% on January 13th, 2020 prior to COVID-19 appearance. The driving indicators examined are 

summarized in Table 1.  

 

Table 1: Variables Units, Description and Source 

Variable Unit Description Source 

Harsh accelerations (HA) /100km 
events/km Number of harsh accelerations per 

distance (100 km) 

OSeven 

Harsh brakings (HB) /100km 
events/km Number of harsh brakings per distance  

(100 km) 

OSeven 

Distance km Total trip distance OSeven 

Mobile Use/ Driving Time 0-100 % Total duration of mobile usage in a trip/  

Trip Duration 

OSeven 

Driving during Risky Hours km Distance driven in risky hours (00:00 - 

05:00) in a trip 

OSeven 

New COVID-19 Cases count New confirmed cases of COVID-19 OWD  

New COVID-19 Fatalities count New fatalities attributed to COVID-19  OWD 

COVID-19 Reproduction Rate - Real-time estimate of the effective 

reproduction rate (R) of COVID-19 

OWD 
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Variable Unit Description Source 

Stringency Index 0-100 Government Response Stringency Index: 

composite measure based on 9 response 

indicators including school closures, 

workplace closures, and travel bans, 

rescaled to a value from 0 to 100  

(100 = strictest response) 

Oxford 

Apple Driving Requests % change  Requests for driving (%)  

(100% - baseline on January 13th, 2020) 

Apple 

 

Table 2 presents the descriptive statistics of the investigated variables, i.e., mean, standard deviation, maximum 

value, minimum values for the random subset of trips (305,638 trips). More specifically, 16,927 trips (5.5% of the 

total) were observed at the 1st lockdown and 42,262 trips (13.8%) at the 2nd. It is worth noting that all the under-

investigation variables are continuous and therefore there was no need for special practice during the analysis in 

contrast to the discrete variables. The sample size was different for COVID-19 metrics, measures and mobility 

compared to driving data as they had daily observations for the entire 2020. The datasets were merged for analysis 

purposes, specifically for each trip (provided by OSeven) as well as the daily value of the rest datasets was assigned 

(i.e., OWD, Oxford and Apple datasets). 

 

Table 2: Descriptive Statistics of Investigated Variables 

 Variable Mean SD Min  Max Sample Size 

 Harsh Accelerations (HA) 

/100km 

9.36 17.37 0 99.98 305,638 

 Harsh Brakings (HB)  

/100km 

13.59 19.76 0 99.99 305,638 

 Distance 13.28 23.65 0.50 648.69 305,638 

 Mobile Use/ Driving Time 0.05 0.14 0 1.00 305,638 

 Driving during Risky Hours 0.42 4.32 0 427.70 305,638 

 New COVID-19 Cases 363.40 662.56 0 3316.00 366 

 New COVID-19 Fatalities 12.36 26.93 0 121.00 366 

 COVID-19 Reproduction Rate 0.83 0.52 0 1.48 366 

 Stringency Index 48.17 28.11 0 84.26 366 

 Apple Driving Requests 114.35 52.57 18.59 241.14 364 

 SD: Standard Deviation      

2.2 COVID-19 Restriction Measures 

Table 3 summarizes the two lockdown periods of non-essential movements due to the COVID-19 pandemic that 

have been announced by the Greek government.  

 

Table 3: Lockdown Measures and important Dates 

Greece – Lockdown Measures 

1st Lockdown restrictions on non-essential movements 23-03-2020→04-05-2020 

2nd Lockdown restrictions on non-essential movements 07-11-2020→31-12-2020 

(Continued in 2021 ) 

 

The two lockdowns of 2020 are included in Figure 1 in gray shades. Furthermore, the figure illustrates the 

evolution through time of driving mobility volumes (i.e., driving requests) in relation to COVID-19 new cases, 

stringency index of measures, and lockdown periods. An initial observation is that driving requests were 

significantly reduced during both lockdowns. Nevertheless, the greatest reduction in driving requests was during 

the first lockdown. Also, there was a spike of nearly 250% (150% more compared to the 100% baseline of January 

13th) in the requests in the first half of August. These observations were further analyzed and elaborated by 

combining the chosen analysis on OSeven naturalistic driving data. In addition, driving data were analyzed 

descriptively for lockdowns comparison. 
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Figure 1: COVID-19 Overview of mobility along with restrictions (lockdown and stringency index) and 

new COVID-19 cases 

2.3 XGBoost Analysis 

As an analysis method was chosen the Extreme Gradient Boosting (XGBoost) algorithms. XGBoost algorithms 

were deployed in order to evaluate the feature importance of the aforementioned variables, i.e., mobility, COVID-

19 metrics and restrictions in regards to the naturalistic driving behavior indicators. The naturalistic driving 

behavior indicators were the frequency of harsh events, such as harsh brakings and harsh acceleration per distance 

(100km). It should be mentioned that XGBoost is a supervised ML technique and the user defines the 

independent/dependent variables. The learning process of the algorithm is iterative and consequently involves 

correcting previous errors in future iterations of the algorithm. A detailed overview of the comprised parameters 

and technical specifications of the algorithm in the used library can be found in [18]. XGBoost analysis was used 

because it has been shown to be superior in accuracy compared to logistic regression models or even other ML 

methods such as Random Forests, Artificial Neural Network, Support Vector Machines, both in the area of traffic 

safety [19]. 

 

In addition, the XGBoost algorithms have the capability to calculate the importance of each predictor variable in 

the developed model. In the XGBoost algorithm, the following three variable importance metrics were extracted 

[18]. These variable importance metrics are used by the XGBoost algorithms in the analysis to show which 

variables are informative in describing the driving behavior indicators (HA and HB /100km): 

• Gain describes the enhancement in accuracy that a feature adds to its branches. 

• Cover describes the relative amount of observations (or the number of samples) concerned by a feature. 

• Frequency describes how often a feature is used in all generated trees. 

 

The gain metric is used for feature importance illustration as shown in Figures 2 and 4. 

3. Analysis and Results 

An initial description of the parameters as provided in the XGBoost algorithm is given. Firstly, a random split was 

employed in the data (as described in section 2); 75% was the training set, while the remaining 25% was the test 

set. Moreover, all the outliers were identified and then removed from the dataset, creating a clean undistorted 

analysis. Furthermore, multiple values in terms of learning rate (eta) were tested (0.01-0.3) for each XGBoost for 

extracting the optimal model for harsh events. Additionally, K-fold cross validation was conducted in order to find 

the number of best iteration within the XGBoost algorithm. Specifically, cross-validation involves splitting the 

data set into parts; 75% to train the model and the remaining data (25%) is not used for backpropagation but is 

used to determine a test error. If this error stops improving (or in most cases worsens), it is a sure sign that the 

model is overfitting - so the training should stop at this point [20]. 

 

The defined parameters for the XGBoost model for harsh events are provided as follows: 

• Learning rate (eta)= 0.01-0.3 

• Gamma= 1 

• Maximum depth of a tree= 6  

• Subsample ratio of the training instances= 0.8  
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• Subsample ratio of columns when constructing each tree= 0.5 

3.1 Harsh Acceleration Events 

In this subsection, the results of the XGBoost for Harsh Accelerations (HA) /100km are presented and these 

outcomes are further elaborated in the discussion section. Firstly, the predictive power and accuracy provided by 

the application of the XGBoost algorithms on the test subset can be extracted by the achieved error. Table 4 

presents the accomplished error i.e., ME=0.081, RMSE = 17.314 and MAE = 12.012.  

 

Table 4: Errors on Test Predictions 

 ME RMSE MAE 

Test set 0.081 17.314 12.012 

 

The obtained feature importance is provided in Table 5 and Figure 2. The top three variables that impacted the 

most within HA/100km model were; distance, mobile use/ driving time, driving requests. Also, a small 

contribution was also provided by driving during risky night-time hours. Then, the COVID-19-related variable of 

new COVID-19 cases in Greece seems to precede compared to other COVID-19-related variables. Other COVID-

19-related variables that influenced the harsh accelerations in Greece were COVID-19 Reproduction Rate, 

Stringency Index, and New COVID-19 Fatalities. The influence of predicting harsh events is expressed by the 

gain scores of XGBoost (Table 5 and Figure 2).  

 

Table 5: Feature importance of HA/100km - 

XGBoost algorithms 

Feature Gain Cover Frequency 

Distance 0.531 0.364 0.242 

Mobile use/ Driving time  0.207 0.212 0.198 

Apple Driving Requests  0.086 0.174 0.161 

New COVID-19 Cases  0.060 0.083 0.115 

Driving during Risky hours  0.039 0.053 0.107 

COVID-19 Reproduction 

Rate 

0.031 0.042 0.078 

Stringency Index  0.023 0.029 0.045 

New COVID-19 Fatalities  0.023 0.043 0.054 

 

 
Figure 2: Feature importance of HA/100km - 

Information Gain  
 

Boxplots were created supplementary to XGBoost, and they can be seen in Figure 3, in order to reveal the trend 

of harsh accelerations under these three different restriction measures of 2020, something that XGBoost could not 

reveal directly from feature importance. In general, the boxplot shows the median, interquartile range, minimum, 

maximum values of completion time for each measure. Figure 3 (left), presents the boxplot for harsh accelerations 

including the whole dataset. As can be seen in the boxplot, the median values for each condition equal zero. To 

that end, an additional boxplot in Figure 3 (right) was created by excluding the zero values of the dataset, hence 

this boxplot presents only the trips with harsh events occurrence and the findings are discussed below. The 2nd 

lockdown in Greece has a narrower interquartile range than the other conditions (i.e., 1st lockdown and without 

restrictions). This means that the upper quartile of the 2nd lockdown is lower than the other conditions. Also, the 

1st lockdown has a higher upper quartile compared to without restrictions and the 2nd lockdown. Figure 3 (right), 

as mentioned previously, the zero values were excluded from the dataset and present only the trips with harsh 

events occurrence, the highest median was observed at the 1st lockdown, then at 2nd, and then without restrictions. 
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Figure 3: (left) Harsh Accelerations/100km under different restriction measures  

(right) Harsh Accelerations/100km under different restriction measures by excluding zero values    

3.2 Harsh Braking Events 

In this subsection, the results for Harsh Brakings (HB)/100km are presented and, as mentioned previously, these 

outcomes are further elaborated in the subsequent section. Table 6 presents the accomplished error for this model 

i.e., ME=-0.025, RMSE = 19.529 and MAE = 14.561.  

 
 

Table 6: Errors on Test Predictions 

 ME RMSE MAE 

Test set -0.025 19.529 14.561 

 

The obtained feature importance is provided in Table 7 and Figure 4. Similar to the harsh accelerations model, the 

top three variables that impacted the most the HB were; distance mobile use/ driving time, driving requests. A 

small contribution was also provided by driving during risky night-time hours. However, the COVID-19-related 

variable that influenced the most HB in Greece is different than the HA model. COVID-19 Reproduction Rate was 

found to influence the most HB. Other COVID-19-related variables that influenced the harsh brakings in Greece 

were New COVID-19 Cases, Stringency Index, and New COVID-19 Fatalities.  

 

Table 7: Feature importance of HB/100km - 

XGBoost algorithms 

Feature Gain Cover Frequency 

Distance 0.608 0.368 0.250 

Mobile use/ Driving time  0.102 0.132 0.182 

Apple Driving Requests  0.078 0.151 0.140 

COVID-19 Reproduction 

Rate 

0.063 0.082 0.085 

New COVID-19 Cases 0.053 0.101 0.124 

Driving during Risky 

hours 

0.039 0.077 0.117 

Stringency Index  0.039 0.053 0.051 

New COVID-19 Fatalities  0.019 0.035 0.051 

 

 
Figure 4: Feature importance of HB/100km - 

Information Gain  
 

  

19.80 17.62 18.95 

0 0 0 
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Figure 5 (left), presents the boxplot for harsh accelerations including the entire dataset. As can be seen in this 

boxplot, the highest median value was observed during the 1st lockdown. Then, the conditions without restrictions 

follow and it is noteworthy that the median for the 2nd lockdown equals zero. The box of the 2nd lockdown in 

Greece has a narrower interquartile range than the other conditions (i.e., 1st lockdown and without restrictions). 

This means that the upper quartile of the 2nd lockdown is lower than the other conditions. Also, the 1st lockdown 

has a higher upper quartile compared to without restrictions and the 2nd lockdown. Figure 5 (right), similarly to the 

HA model, the highest median was observed at the 1st lockdown, then at 2nd, and then without restrictions. 

 

       
Figure 5: (left) Harsh Brakings/100km under different restriction measures  

(right) Harsh Brakings/100km under different restriction measures by excluding zero values    

4. Discussion 

Τhe paper aims to identify and investigate the most significant factors in the entire 2020 that influenced the 

relationship between the COVID-19 pandemic metrics (i.e., COVID -19 cases, fatalities, and reproduction rate) 

and restrictions (i.e., stringency index and lockdown measures) with driving behaviour. The results of the 

exploratory analysis by XGBoost suggest a correlation of COVID-19 metrics and restriction measures with driving 

behaviour. Furthermore, different patterns were revealed for both harsh events among the three examined 

conditions, i.e., without restrictions, 1st lockdown, and 2nd lockdown.  

 

The top three variables that influenced the most HA and HB events were common for both types of events namely; 

distance, mobile use/ driving time, and driving requests (requested in Apple Maps). More specifically, trip distance 

and mobile use duration were the two most important factors out of the eight examined variables that influence 

HA and HB, and this finding is consistent with [12] in which they investigated the influence on HB events only 

during the 1st lockdown in Greece. It is worth noting that trip distance had a great impact on HA and HB events 

probably due to the fact that the longer trips were driven on highways and rural roads. Hence, the change in road 

type probably influences the drivers’ braking and acceleration patterns with more or less frequent harsh events. 

Another causal factor for the correlation between harsh events and duration was the increasing fatigue by 

increasing the trip distance. However, these assumptions need further research in order to be validated. 

Additionally, mobile phone use, which reveals drivers’ distraction, shows the importance of the drivers to be 

undistracted in order to avoid HA and HB events. After trip duration and mobile phone use, driving requests follow 

which are a driving exposure measurement and is an indication of the prevailing traffic volumes [10] and this 

finding reveals the relation between this exposure measurement with HA and HB events. A small contribution on 

HA and HB was also provided by driving during risky nighttime hours indicating that there was a change in events 

during nighttime driving (00:00 - 05:00) and this finding is consistent with existing literature [12]. 

 

The aforementioned top three variables were extraneous with COVID-19 variables, and this is clear since the 

COVID-19 pandemic had no direct effect and causality on driving behaviour. Nevertheless, four COVID-19-

related variables were found to impact HA and HB events. New COVID-19 cases in Greece seemed to precede 

compared to other COVID-19-related variables in terms of HA events. Interestingly, on the contrary to HA, 

COVID-19 Reproduction Rate was found to influence the most HB events. This is proof that COVID-19 metrics 

and restriction measures impacted driving behaviour since the COVID-19-related variables that influenced the HA 

and HB events in Greece were COVID-19 Reproduction Rate, Stringency Index, and New COVID-19 Fatalities 

and Cases.  

 

Before analyzing the boxplot findings, it is necessary to investigate how the driving exposure measurement of 

Apple driving requests in Figure evolved through time in 2020 in Greece. It can be concluded from Figure 1 that 

driving requests were significantly decreased during both lockdowns compared to the baseline of no restrictions. 

6.96 

0.00 
3.24 

23.06 20.85 20.12 
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The greatest reduction was observed in the first lockdown compared to the second. This means that the traffic 

volume during the 1st lockdown was lower than the other conditions and hence with fewer vehicles ahead, the 

drivers could accelerate more easily and this can be revealed based on Figure 3 (left); the upper percentile was 

higher than other conditions. Additionally, in Figure 3 (right) for trips with harsh accelerations occurrence, the 

median was higher than the other conditions meaning that the HA events were more frequent even at the trips with 

maximum values. This finding is also consistent with the literature [7]. With regards to the 2nd lockdown, for trips 

with harsh accelerations, the median was higher compared to without restriction conditions as a result of the 

decreased traffic volume but not the same magnitude as the 1st in which the traffic volume was lower.  

 

With regards to HB events, in Figure 5 (left), again, the upper percentile is greater than other conditions as well as 

for trips with harsh brakings, Figure 5 (right), the median is higher than the other conditions meaning that the HB 

events were more frequent even at the trips with maximum values. This finding is also consistent with the literature 

[7]. This can be explained as the traffic volume during the 1st lockdown was lower than the other conditions and 

hence with fewer vehicles ahead, the drivers could maintain higher speeds as stated in [7] and it was more probable 

for the drivers to be involved in a harsh braking event with a higher speed. With regards to the 2nd lockdown 

following the same logic as HA, for trips with harsh brakings, the median was higher compared to no restrictions 

as a result of the decreased traffic volume but not the same magnitude as the 1st in which the traffic volume was 

lower.  

 

Nevertheless, this work is not without shortcomings, and therefore, future research could focus on covering the 

remaining gaps that this work did not cover. Initially, future studies could concentrate on more sophisticated 

models, such as deep neural networks, e.g., Convolutional neural networks (CNN) or Artificial Neural Networks 

(ANNs), or other artificial intelligence techniques, which probably can accomplish lower errors and give more 

insights into driving behaviour variables. In addition, more variables with regards to driving behaviour, i.e., 

speeding, speeding duration, and speed, could be exploited using the same method in order to give in the same 

context results. These variables were tested but they presented a great error and therefore did not include in this 

work. Nevertheless, the aforementioned sophisticated models could successfully predict these variables. 

Additional data with geolocation information could lead to, an addition to the current method, spatial analysis of 

the examined variables which would give significant spatial outcomes. Lastly, the current analysis could be 

combined with road type data and all these could provide insights into driving behaviour for each road type.  

5. Conclusions 

In order to accomplish this study, naturalistic driving data for a 12-month timeframe were exploited and analyzed. 

The examined driving behaviour variables were HA and HB events concerning a time period before, during and 

after the lockdown measures in Greece. The naturalistic driving data were extracted using data obtained by a 

specially developed smartphone application and were transmitted to a back-end telematic platform (OSeven). The 

top three variables that influenced the most HA and HB events were mutual for both types of events namely; 

distance, mobile use/ driving time, and driving requests (as requested in Apple Maps). These top three variables 

were extraneous with COVID-19 variables, and this is clear since the COVID-19 pandemic had no direct effect 

and causality on driving behaviour. Furthermore, a small contribution on HA and HB was also provided by driving 

during risky nighttime hours indicating that there was a change in events during nighttime driving (00:00 - 05:00). 

 

Focusing on the COVID-19-related variables, this study identified the most significant factors in the entire 2020 

that influenced the relationship between the COVID-19 pandemic metrics (i.e., COVID-19 new cases, new 

fatalities, and reproduction rate) and restrictions (i.e., stringency index) with driving behaviour. The results of the 

exploratory analysis by XGBoost indicate a correlation of COVID-19 metrics and restriction measures with harsh 

brakings and accelerations. Furthermore, for all the investigated three conditions, i.e., no restrictions, 1st lockdown, 

and 2nd lockdown, different HA and HB event patterns were revealed. Taking the aforementioned into account, it 

can be concluded that HB and HA (for trips with harsh events occurrence) were increased and more frequent 

during lockdown restrictions due to their correlation with driving exposure measurements (i.e., Apple driving 

requests). 
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