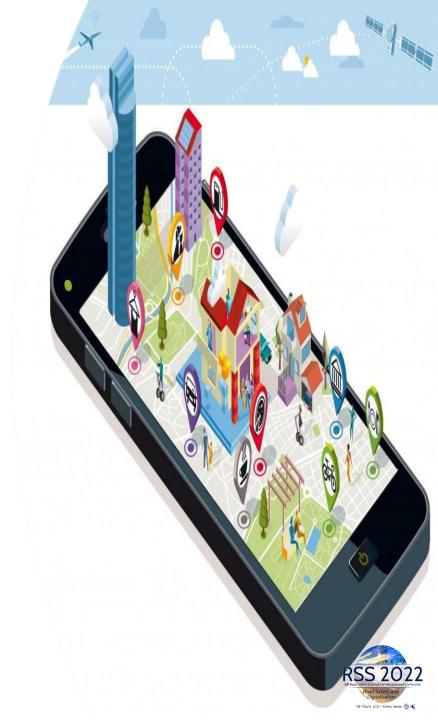


smartphone sensor data

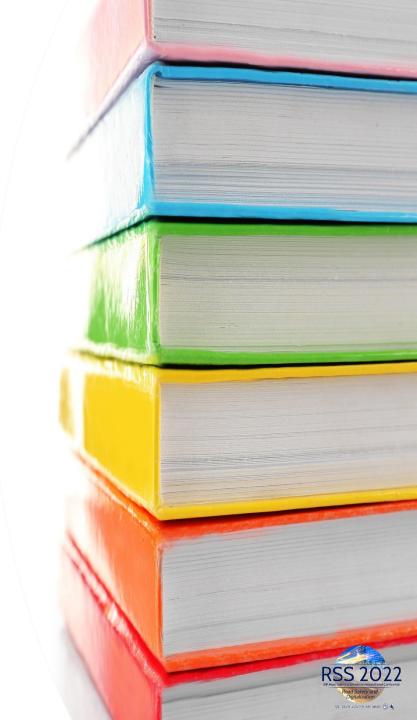
Apostolos Ziakopoulos


PhD, Transportation Engineer

Together with: Konstantina Kokkali and George Yannis

Introduction

- The purpose of this Diploma Thesis research is to correlate stated and revealed driver behavior
- Data obtained from smartphone sensors are exploited
- The key surrogate road safety metrics of harsh accelerations and harsh brakings are examined


Bibliography

Studies based on driving behavior using data from smartphones

The consensus is that driving behavior tracking systems improve road safety performance. However, monitoring needs to be maintained over time.

Studies correlating stated and revealed driving behavior using data from smartphones

Combining methods of estimation and calculation eliminates the disadvantages of singular methods and increases result accuracy.

Data Collection Process

- 19 drivers were recruited
- They installed the <u>OSeven application</u> for <u>driver</u> monitoring

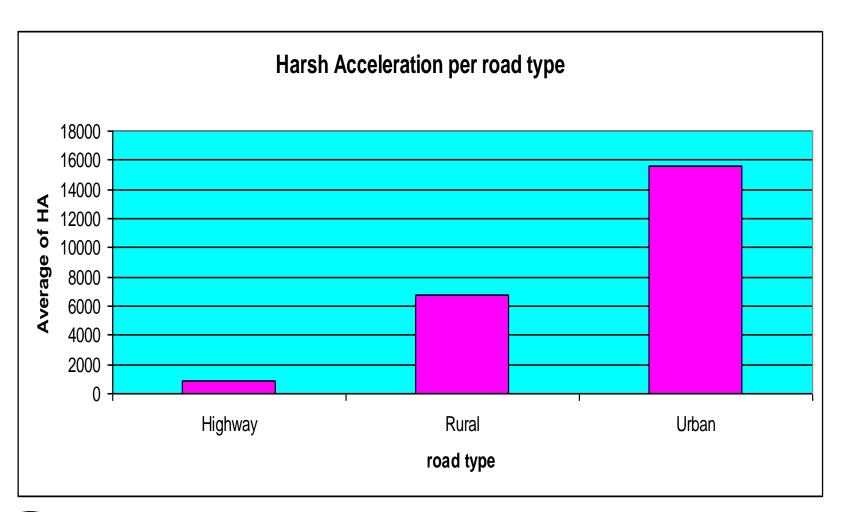
They conducted their usual daily trips (naturalistic driving)

Data Processing

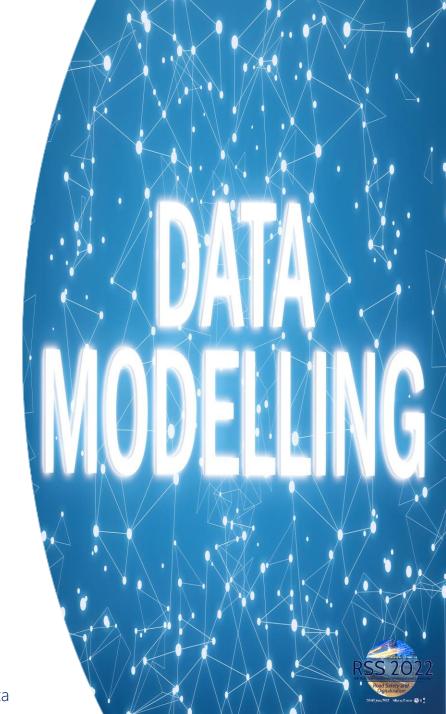
- - - >

Scores & Analytics

Drivers also responded to targeted questionnaires for stated behavior data collection

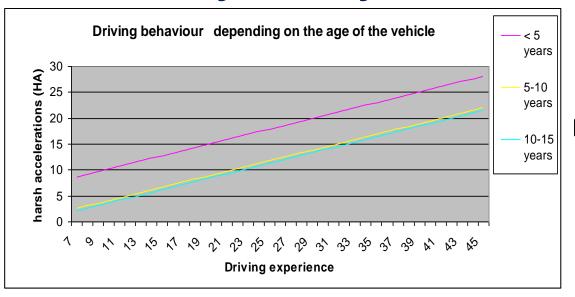


Descriptive Statistics

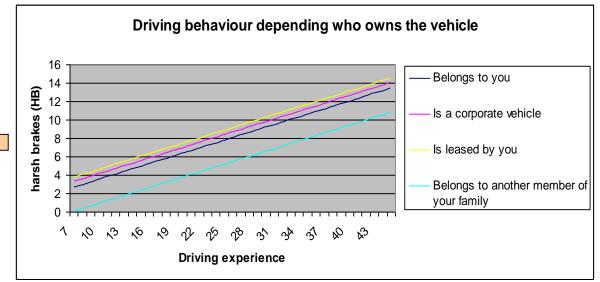

More harsh acceleration events in urban environments

Statistical model analysis

- Poisson models were developed [IBM SPSS 21.0]:
- Multicollinearity tests were conducted to ensure no bias is introduced to model coefficients.
- Model for harsh acceleration event counts
 Driving experience, Inj. Crash involvement, Driver/Vehicle age, Profession, Cautious driver self-characterization
- Model for harsh braking event counts
 Driving experience, Inj. Crash involvement, Driver Age, Fines sustained (3y), Vehicle ownership, Skillful driver self-characterization


Statistical model results

	Model 1 – Harsh accelerations			Model 2 – Harsh brakings		
Independent Variables	bi	ei	ei*	bi	ei	ei*
Driving Experience	0.511	0.006	1.000	0.283	0.009	1.000
Age_vehicle	-6.599	-0.452	38.818			
≥1 Inj. Crash involved	6.226	0.426	36.624	-1.002	-0.168	1.648
Cautious driver	2.855	0.195	16.794			
Age_driver	-0.522	-0.013	2.060	-0.182	-0.011	1.297
Profession: Private Employee	9.816	0.672	57.741			
Vehicle_own_family				-2.613	-0.437	4.298
≥ 1 Fines_last 3y				7.596	1.270	12.493
Skillful_driver				-1.882	-0.315	3.095


Variables are **significant** with p-values ≤ **0.05**

Sensitivity Analyses

Driving
experience
increases
harsh
acceleration
occurrence,
vehicle age
decreases it

Vehicle
ownership
within family
decreases
harsh
braking
occurrence

Harsh Acceleration Results

- Driving experience, Involvement in more than one injury crashes, Self-characterization as Cautious driver & Profession as a private sector employer ...all increase harsh acceleration counts generated by drivers
- Vehicle age & Driver age ...decrease harsh acceleration counts generated by drivers

Harsh Braking Results

- Driving experience & Involvement in more than one fine in the last 3 years ...increase harsh braking counts generated by drivers
- Driver age, Involvement in more than one injury crashes, Vehicle ownership by family members & Self-characterization as Cautious driver ...decrease harsh acceleration counts generated by drivers

Concluding remarks

- Data was collected from driver smartphones independent of vehicle
- Results can be used as incentives by insurers to conduct further analysis and to reward more cautious drivers
- Application-based feedback is already provided; education programs can be further developed
- Several GLM functions can be used to model harsh event counts in the future including traffic conditions, multiple cross-sectional samples and comparison of different environments

smartphone sensor data

Apostolos Ziakopoulos

PhD, Transportation Engineer

Together with: Konstantina Kokkali and George Yannis

