

LISBON 2022

Establishing the relationship between crashes and unsafe driver behaviors in motorway segments

Katerina Deliali^a , Apostolos Ziakopoulos^a, Anastasios Dragomanovits^a, Ioannis Handanos^b, Christos Karadimas^b, George Kostoulas^c, Eleni Konstantina Frantzola^c, George Yannis^a

^aNational Technical University of Athens, Department of Transportation Planning and Engineering, Athens, Greece ^bUOlympia Odos Operation SA, Vlichada 19100, Greece ^cOSeven, 27B Chaimanta str., Chalandri 15234, Greece

INTRODUCTION

- Crash-based safety analysis suffers from several limitations (e.g., unreliable crash data)
- Surrogate safety analysis stands as an alternative

METHODOLOGY

Crash prediction models were developed to model the relationship between crashes and unsafe driver events.

POSTER SESSIC

- It is assumed that the number of crashes per motorway
- approach.
- It remains unclear how various metrics that describe unsafe driving relate to crash occurrence.

OBJECTIVES

This work aims to address existing research gaps by investigating the relationship between crashes and three unsafe driver behaviors: **1**. **speeding**, **2**. **harsh braking and 3**. **harsh acceleration**. The outcome of this work will be a step towards the establishment of proactive safety assessment methods.

DATA

400 -

The analysis was conducted for Olympia Odos motorway, (~200km) for which relevant data were available.

- **Road data**: horizontal curve radius, inside and outside shoulder widths, outside clearance, lane width, median width, barrier type, and interchange design characteristics
- Crash data (2017-2020)
- AADT data (2017-2020)

400 -

• Driver telematics data: 2019 and 2020 trip data with a total of ~1.3 million trips

Figure 1: Crash frequency per year

400 -

segment follows the Poisson distribution.

RESULTS

Variable	Coefficient	St. Error	Z	P> z	[0.025	0.975]
Intercept	-7.0100	1.337	-5.245	0.000	-9.630	-4.390
In(AADT)	0.7740	0.143	5.415	0.000	0.494	1.054
In(length)	0.9291	0.273	3.402	0.001	0.394	1.464
Average HA	20.1427	8.826	2.257	0.023	2.647	37.638

Table 3: Crash prediction model with harsh braking events

Variable	Coefficient	St. Error	Z	P> z	[0.025	0.975]
Intercept	-7.4137	1.335	-5.552	0.000	-10.031	-4.796
ln(AADT)	0.8134	0.143	5.690	0.000	0.533	1.094
In(length)	0.8598	0.266	3.234	0.001	0.339	1.381
Average HB	18.4454	12.930	1.426	0.154	-6.899	43.788

Table 4: Crash prediction model with harsh speeding events

Variable	Coefficient	St. Error	Z	P> z	[0.025	0.975]
Intercept	-7.2976	1.999	-3.651	0.000	-11.215	-3.380
In(AADT)	0.8014	0.204	3.933	0.000	0.402	1.201
In(length)	0.8085	0.262	3.082	0.002	0.294	1.323
Average Speeding	0.0289	0.646	0.045	0.964	-1.237	1.295

CONCLUSIONS

The conclusions drawn from the current research can serve as the **base for developing similar** models to further explore the relationship between unsafe driver events and crash occurrence. Future research should explore how disaggregate driver telematics data can be used instead of aggregated one.

Table 1: Summary statistics for the representative dataset provided by OSeven.

	201	9 (6 month	s)	2020 (12 months)			
	Harsh acceleration events	Harsh braking events	Speeding events	Harsh acceleration events	Harsh braking events	Speeding events	
Mean	1.42	1.56	1.26	1.53	1.69	1.27	
St. deviation	13.63	11.89	9.15	11.67	10.85	10.11	
Variance	185.83	141.28	83.72	136.23	117.69	102.21	

Acknowledgements

This research is part of the project "i-safemodels – International Comparative Analyses of Road Traffic Statistics and Safety Modeling" of the National Strategic Reference Framework (NSRF): Greece – China Joint R&D Projects, funded by the "Competitiveness, Entrepreneurship and Innovation" (EPAnEK) (2019- 2022).

CO-ORGANISED BY:

HOSTED AND ORGANISED BY:

IN COOPERATION WITH:

LABORATÓRIO NACIONA DE ENGENHARIA CIVIL

WATERBORNE

