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Abstract 

The era of automation has already been launched in the field of transportation, expected to increase road capacity and safety levels 

by reducing and eliminating crashes while the environmental impacts are also anticipated to be positive. Various studies have tried 

to analyze the behaviour of automated vehicles and their interaction with the surrounding traffic while concerning pedestrians, 

research is still limited. The present work aims to enrich existing research by modelling the behaviour of an automated vehicle 

when it interacts with a pedestrian with the intention to cross the road. For this purpose, vehicle and pedestrian trajectories from a 

virtual experiment are analyzed and the principles of inverse reinforcement learning are used for developing the model. The results 

are further discussed along with suggestions for future work.     
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1. Introduction 

One of the challenges in the field of traffic automation is modelling and simulating the behaviour of autonomous 

vehicles. Till now, researchers were focusing on developing driver behavioural models (DBMs) mimicking the human 

driver. However, the advent of autonomous vehicles creates the need to observe and model the behaviour of the 

‘machine-driver’, consisting of various sensors exchanging information and acting according to the road context. 

Various DBMs have been proposed in literature and have formulated the basis for modelling (connected) automated 

vehicles ((C)AVs) in various simulation software. These models include the (Cooperative) Adaptive Cruise Control 

(C)ACC models, data driven approaches or are based on existing human behavioural models, whose parameters are 
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modified and adapted in order to mimic the automation function (Do et al. 2019). Existing research mainly focuses on 

modelling the behaviour of autonomous vehicles within the traffic flow and assesses their impact on critical areas such 

as safety, traffic and network efficiency, public transportation performance and environment. In these cases, the models 

are tested in simulation environments, where different profiles of the autonomous “driver” (aggressive, normal, 

conservative) can also be developed. More specifically, autonomous vehicles are studied concerning their interaction 

with the surrounding traffic (i.e., vehicles) in terms of the distance to their preceding vehicles and the side distances 

to the right and left 

Modelling the interaction of autonomous vehicles with vulnerable road users, such as pedestrians, is still in its 

infancy, but gradually gains increasing attraction due to its safety implications. Not only must the autonomous vehicle 

be able to detect the vulnerable road user, it must also react properly and effectively to avoid collisions and allow 

unobstructed and safe movement of the vulnerable road user. Therefore, this work aims at developing a behavioural 

model for autonomous vehicles to safely interact with a pedestrian with the intention to cross the road, starting from 

the sidewalk 

2. The Model 

Data driven models are flexible and can reveal new variables important for driver behaviour description and 

modelling that could not be detected through traditional models. Furthermore, traditional models are based on specific 

formulas, making them more restrictive. In the era of big data, where vehicles can transmit numerous data through  

V2X communication, data driven models are considered to be the solution towards more evolutionary behavioural 

models that can be integrated to simulation platforms for training the calibrating and training the model and assess the 

impact of the corresponding behaviour on critical areas. After the stability and validity of the model is approved, it 

can be introduced in real test cars. The models are trained using real vehicle data and are validated and calibrated 

using various machine learning techniques. Data driven models have been used for enhancing existing models 

describing the car-following (Zhang et al., 2019) as well the lane changing behaviour (Bi et al., 2016, Wang et al., 

2017), adaptive cruise control (Lin et al., 2020) and other autonomous driving applications (Di et al., 2021, Bachute 

et al., 2021, Kiran et al., 2021, Palasinamy, 2020, Talpaert et al., 2019). 

A machine learning technique widely used in many applications in transportation engineering is Inverse 

Reinforcement Learning (IRL) is a modelling framework aiming to learn the reward function based on the states, 

actions and the optimum policy defined. IRL has been used for modelling interactions between different users in the 

road sector such as pedestrians and cyclists (Alsaleh and Sayed, 2020) as well as for user behaviour such as pedestrian 

trajectories (Martinez-Gil et al., 2020), vehicle navigation on a highway (Levine et al., 2010), risk anticipation 

(Shimosaka et al., 2014) and autonomous vehicle decision making and behaviour (Gao et al., 2018, Sharifzadeh et al., 

2017). It has many structures such as Maximum Entropy (Ziebart et al., 2008), Deep Maximum Entropy (Wulfmeier 

et al., 2016), Adversarial IRL (Fu et al., 2017, Wang et al., 2021) and many more which can be found in the literature.  

The algorithm used in the present study for implementing inverse reinforcement learning is the Maximum Entropy 

(ME) algorithm developed by Ziebart et al. (2008) which assumes optimum behaviour (Alsaleh and Sayed, 2020).  In 

this case, the optimum policy is considered to be extracted by the given n trajectories of an expert which are a sequence 

of states s and actions a (Eq. 1) . Each trajectory has a temporal horizon of h steps.  
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For simplifying the model, single agent IRL is implementing for modelling the behavior of an automated car when 

a pedestrian appears aiming to cross the road and therefore only the trajectories of the vehicle are being taken into 

consideration assuming the pedestrian is an external object. The existence of the pedestrian is included when defining 

the states of the agent-vehicle as it is described in the next section.   

Generally, it can be assumed that the reward function depends on some features φ_i and is expressed as a linear (as 

in the Maximum Entropy algorithm) or nonlinear equation (examples in Eq. 2 and Eq. 3):  

 

𝑅_𝑙𝑖𝑛𝑒𝑎𝑟(𝑠, 𝑎) = ∑ 𝑤𝑖𝜑𝑖(𝑠, 𝑎)  𝑖   (2)      or        𝑅𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑠, 𝑎) = 𝑛𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡(𝜑(𝑠, 𝑎); 𝑤)                   (3) 
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3. Application  

3.1. The dataset 

The data for the model training and evaluation are collected through a virtual reality experiment, led by FZI 

Research Centre for Information Technology, which took place in Karlsruhe, Germany. In these experiments, a human 

expert immersed into the scene via a virtual reality (VR) headset as a pedestrian with the aim of crossing the road. At 

the same time, a simulated vehicle was approaching from the left, and it was either controlled by a human using a 

steering wheel and pedals or by a highly automated driving function. The digital twin of the real test area used for the 

virtual simulated experiments is depicted in Fig. 1. The data include the following information: 

Fig. 1. Digital twin of the Test Area. 

The dataset is visualized using the INTERACTION dataset visualization tool (https://github.com/interaction-

dataset/interaction-dataset) as shown in Fig. 2. Rectangles depict vehicles (green circle) and the blue dots are referring 

to pedestrians (red circle).  

     Table 1. Data collected from the virtual experiment 

Field Description 

Timeframe data is collected every 100 ms 

Agent -type since the experiment investigates the interaction between passenger cars and pedestrians 

the “agent-type” parameter takes the values “car” or “pedestrian” 

x,y the x and y position of the agent (m) 

vx, vy speed values of the agent in the x and y dimension (m/s) 

psi_rad the yaw angle of the agent (rad) 

length length of the agent 

width  width of the agent 

ax, ay  acceleration/deceleration values of the agent in the x and y dimension (m/s2) 

time-headway the temporal distance of the agent from its preceding vehicle (s) 

gap the spatial distance of the agent from its preceding vehicle (m) 

lateral_position the distance of the central axis of the vehicle from the central axis of the lane (m) 

side_distance the distance from the central axis of the agent from the side object (m) 

mode  this parameter describes whether automation mode is on or manual vehicle control is 

applied. Since automation can be activated only in case the agent-type is a car, this 

parameter takes the values “automated” and “simulated” if automated function is on and off 

respectively. For pedestrians, the only value for this parameter is “simulated”. 
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Fig. 2: Visualization of data collected in the VR simulator 

 

3.2. Critical Conditions 

Various factors have been used for describing the interaction between vehicles and pedestrians. A literature review 

was carried out in order to find the most frequent parameters as well as some critical values influencing the decision 

of a pedestrian to cross the road when a vehicle is approaching. In Petzoldt (2014), the critical gaps were estimated 

3.5s and slightly less than 3s for a speed of 30km/h and 50km/h. Clamann et al. (2016) found that a time interval 

between 4s and 7s is critical for the pedestrian as he may intersect with the vehicle’s trajectory. A mean critical gap 

of around 4.1s - 4.8s and mean critical gap distance of 67m-79m were found in a study conducted by Pawar and Patil 

(2016) with a vehicle approaching speed of 62km/h. Palmeiro et al. (2017) tried to analyse whether and how the 

decision to cross the road is influenced based on the vehicle type (traditional or automated). The results showed that 

the critical time gap in case a conventional vehicle is approaching is around 5.5s, while in case of AV 7s 

approximately. In the same experiment, the spatial gap was found to range between 20m - 26m for pedestrian 

interaction with traditional vehicle and 19m – 23m if an AV is approaching. The critical vehicle speed was also 

recorded and estimated at 16km/h and 12km/h for traditional and automated vehicle, respectively. Recently, a virtual 

reality experiment was set up by Woodman et al. (2019), which tested the pedestrian behaviour for time gaps of 2s-

5s. In their experiment, all participants rejected the gap of 2s, while the highest percentage accepted the gap of 5s. 

Oxley et al. (2005) carried out an experiment in order to find out how the pedestrian age affects the parameters 

influencing the crossing decision. For their analysis, they use the spatial gap and the vehicle speed (resulted in the 

time gap).  Apart from the time and spatial gap and the vehicle speed, time to collision has also been used for studying 

the interaction between pedestrians and vehicles. Schneemann and Gohl (2016) conducted a study for observing the 

interaction between a driver and a pedestrian under two different TTC values. For their experiment, the authors chose 

the values of 3s and 4s as the critical ones for assessing pedestrian’s gap acceptance. The review of Rasouli et al. 

(2018) revealed that the gap acceptance in terms of TTC is between 3s and 7s, with the threshold of the 3s meaning 

that the pedestrian will not decide to cross and if the TTC is more than 7s the pedestrian will not cross.    

3.3. State Definition  

The data collected from the virtual experiments were used to extract or estimate variables for defining the states 

space S=(s1, s2, ….sn) where is the number of the given trajectories. Three features are used for defining the states of 

the interaction between the vehicle and the pedestrian: difference of the vehicle and the pedestrian speeds, spatial gap 
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between the two road users and the vehicle speed. Each feature was divided in various levels based on the k means 

clustering results. More specifically, the elbow method and the silhouette coefficient were used in order to define the 

most appropriate number of clusters. Both methods revealed that the features “vehicle speed” and “speed difference” 

should be discretized in two levels while the feature “gap” in three. After this step, the k means method was applied 

for defining the thresholds of each level (Table 2). Combining the three features and their levels resulted in 12 states 

(2x2x3).   

Table 2. Features identified for state definition  

 Vehicle Speed (m/s) Speed Difference (m/s) Spatial Gap (m) 

1 (0.005, 10.60) (0.004, 10.50) (4.20, 11.80) 

2 [10.60, 25.20) [10.50, 25.40) [11.80, 19.50) 

3    [19.50, 33.10) 

 

3.4. Actions Definition 

For the action space, we consider the acceleration as the critical value to define the manner a driver / AV will react 

to external stimuli (e.g. interaction with pedestrian). Based on the acceleration/deceleration values, two levels are 

distinguished: (1) smooth and (2) harsh acceleration/deceleration. The thresholds for this classification was found to 

be around 0.16g – 0.36g (g=9.81m/s2) as it is described in Vlahogianni and Barbounakis (2017). For safety purposes, 

the value 0.16g (≈1.57m/s2) was chosen as the upper limit for considering that the vehicle accelerates/decelerates 

smoothly. Besides, there is also the possibility that the driver will not take any action remaining at his current state. 

Based on the above, 5 actions can be distinguished, as shown in Table 3. 

Table 3. Actions identified  

Actions Value 

Cruising (no change in speed) 0 

Smooth acceleration (0, 1.57] 

Harsh acceleration (1.57, 4.5] 

Smooth deceleration [-1.57, 0) 

Harsh deceleration [-9, -1.57) 

 

4. Results  

4.1.  State features and action attributes statistical analysis  

Vehicle speed, speed difference and spatial gap were the three features used for describing the vehicle state while 

the action of the driver was defined by the vehicle acceleration/deceleration. Table 4 shows the descriptive statistics 

of these five parameters while Fig. 3 presents the distribution of their values and the best fitted distribution the 

statistical analysis revealed. It should be mentioned that acceleration values over 4.5m/s2 and deceleration values 

higher than 9m/s2 (emergency braking) were excluded from the analysis. 

Table 4. Descriptive Statistics  

 Acceleration  

(m/s2) 

Deceleration  

(m/s2)  

Vehicle Speed     

(km/h)  

Speed Difference 

(km/h) 

Spatial Gap      

(m) 

Mean 1.101 1.655 7.285 7.375 13.114 

Standard deviation  0.989 1.610 8.675 6.774 5.767 

Median 0.789 1.226 2.040 4.569 11.736 

Min value 0.007 0.040 0.003 0.004 4.272 

25% 0.330 0.633 0.130 2.673 8.889 

50% 0.789 1.226 2.040 4.569 11.736 

75% 1.547 2.050 14.805 11.349 16.026 

Mean 1.101 1.655 7.285 7.375 13.114 
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Fig. 3: Distribution of values of (i) acceleration, (ii) deceleration, (iii) vehicle speed, (iv) speed difference and (v) spatial gap 

 

4.2. The Reward function  

The implementation of the maximum entropy inverse reinforcement learning algorithm will produce the reward 

function weights for the features used for the state definition, i.e. vehicle speed, speed difference and spatial gap and 

for each of the defined levels for each feature. According to the results, shown in Figure 4, states including vehicle 

speed of level 1 give higher reward than the states with much higher speeds (level 2) indicating that the vehicle should 

decelerate when the pedestrian appears and starts moving tending to cross the road. Concerning the spatial gap, the 

highest reward value is observed for level 3, corresponding to higher values of the distance between the pedestrian 

and the approaching vehicle showing that the pedestrian feel safer to cross when the distance is greater. On the other 

hand, it seems that the drivers do not prefer to keep very low spatial gaps with the pedestrian as level 1 has the lowest 

reward function weight. Finally, as far as the speed difference is concerned, drivers seem to prefer not to be very slow 

(i) (ii) 

(iii) (iv) 

(v) 
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compared to the pedestrians and therefore speed differences values belonging the second level give higher reward 

compared to lower values.  This reveals that even though drivers decelerate in the vicinity of a pedestrian, they do not 

prefer to apply maximum deceleration but to keep a reasonable speed.  

Fig. 4: Reward function weights for the different levels of the three features 

5. Conclusion and future work  

The present work is a preliminary effort in modelling the behaviour of an automated vehicle when it interacts with 

a pedestrian standing in the curb aiming to cross the road. Based on trajectories from an automated vehicle collected 

through a virtual experiment and the principles of inverse reinforcement learning, it was attempted to investigate, 

study and model the behaviour of an equipped vehicle that will ensure safe interaction with vulnerable road users. The 

model which is single agent, as it investigates the behavior of the vehicle, can improve safety not only in crossings 

and shared spaces but also in spots where a pedestrian could unexpectedly try to cross the road and the 

automated/autonomous vehicles would be required and expected to react immediately and efficiently to avoid a crash 

and, as a result, increase the safety levels.  

The proposed model can be further improved with additional data, collected from the virtual experiment or data 

from real trajectories collected in real infrastructure pilots. Additionally, it can be integrated in automated vehicles for 

assisting the machine in case of pedestrian appearance as well as decide the best sequence of actions based on the 

distance from the pedestrian, his speed as well as the vehicle speed. Additionally, we further intend to implement a 

multi agent maximum entropy inverse reinforcement learning to introduce a dynamic, instead of static, environment 

and analyze the behavior of both the pedestrian and the vehicle and what are the principles leading to a safe interaction.  
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