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Abstract 

Several factors of driver state negatively impact road safety, such as distraction (in-vehicle or external), fatigue and drowsiness, 

health issues and extreme emotions. The aim of the current study is to define a Safety Tolerance Zone (STZ) for speed, and integrate 

crash prediction and risk assessment. A naturalistic driving experiment was conducted and data from a representative sample (N=20 

drivers) was utilized. Explanatory variables of risk and the most reliable indicators were assessed. A feature importance algorithm 

extracted from Extreme Gradient Boosting (XGBoost) was used to evaluate the significance of variables on forecasting STZ. 

Additionally, a Neural Network model was implemented for real-time data prediction. Results indicated a strong relationship 

between the STZ level for speed and the independent variables of headway, distance travelled and medium harsh braking events. 
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1. Introduction 

Approximately, 1.25 million people die every year on roads worldwide, with millions more sustaining serious 

injuries and living with long-term adverse health consequences (World Health Organization, 2015). Globally, road 

crashes are one of the leading causes of death, especially among young people, as well as the number one cause of 

death among those aged 15–29 years (World Health Organization, 2008). Currently, road crashes are estimated to be 

the 9th leading cause of death across all age groups, and will also become the 7th dominant cause of death by 2030. 
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Several factors that affect the likelihood of a road traffic crash or a serious injury have been identified in the 

literature (Wang et al., 2021). These factors include the driver state, such as distraction, fatigue and drowsiness, health 

issues and extreme emotions and have been found to have a negative impact on road safety (Papantoniou et al., 2017; 

Pawelec, 2021). Moreover, differences in socio-cultural factors are still among the main determinants of road risks 

(Melinder, 2007). At the same time, technological developments make massive and disaggregated operator 

performance data easily available, for example, through new in-vehicle sensors that capture detailed driving style and 

contextual data (Hong et al., 2014). This creates new opportunities for the detection and design of customized 

interventions to mitigate the risks, increase awareness and upgrade driver performance, constantly and dynamically.  

To exploit these opportunities, several machine learning techniques have been used in road safety analysis and 

traffic flow modelling. To begin with, Girma et al. (2019) proposed a deep learning model, (i.e. aLong Short Term 

Memory - LSTM model), in order to classify drivers according to their individual unique driving performance using 

vehicle telematics data. Results indicated that the proposed model’s prediction accuracy remained satisfactory and 

outperformed other approaches despite the extent of inconsistencies induced in the dataset. Moreover, Chong et al. 

(2013) trained a fuzzy rule-based neural network to model the acceleration of a car-following vehicle. Fuzzy logic 

was used to discretize traffic state and action variables and reinforcement learning was used for the Neural Network 

(NN) to learn driving behavior patterns from naturalistic data. 

The overall objective of the European H2020 i-DREAMS† project aims to define, develop test and validate the 

concept of the ‘Safety Tolerance Zone’ (STZ), with a smart Driver, Vehicle & Environment Assessment and 

Monitoring System. The term ‘Safety Tolerance Zone’, although abstract in nature, refers to a real phenomenon, i.e. 

self-regulated control over transportation vehicles by (technology assisted) human operators in the context of crash 

avoidance. Driving task complexity indicators (e.g. road layout, weather conditions, time of the day) and driver 

background factors (e.g. fatigue, distraction, sleepiness) are taken into consideration and a continuous real-time 

assessment is created in order to monitor and determine if a driver is within acceptable boundaries of safe operation 

(i.e. Safety Tolerance Zone). In addition, safety-oriented interventions and post-trip feedback are provided in order to 

prevent drivers from getting too close to the boundaries of unsafe operation. 

The STZ is made up of three phases: Normal Driving phase, Danger phase and Avoidable Accident phase. Firstly, 

“Normal Driving” refers to the phase, where conditions at that point in time suggest that a crash is unlikely to occur 

and therefore, the crash risk is low and the operator is successfully adjusting their behavior to meet task demand. 

Secondly, the “Danger phase” is characterized by changes to the “Normal Driving” that suggest a crash may occur 

and thus, there is an increased crash risk. At this phase, a crash is not inevitable but becomes more likely. Lastly, the 

“Avoidable Accident” phase occurs when a collision scenario is developing, but there is still time for the operator to 

intervene to avoid the crash. In this phase, the need for action is more urgent to denote that if there are no changes or 

an evasive manoeuvre performed by the operator, a crash is very likely to occur. 

Based on the above framework, the objective of the current study is to define a Safety Tolerance Zone for speed, 

and integrate crash prediction and risk assessment under a NN framework. To that aim, explanatory variables of risk 

and the most reliable indicators of task complexity and coping capacity, such as time headway, distance travelled, 

speed, forward collision, time of the day (lighting indicators) or weather conditions were assessed.  

The paper is structured as follows. After this introduction, an overview of the data collected for the analysis is 

presented. Subsequently, a brief description of the methodological approach is provided. Subsequently, the significant 

findings are drawn and the results of the statistical analysis performed are summarized. Lastly, conclusions are 

highlighted and the limitations along with some proposals for further research are clearly stated. 

2. Data collection 

For the purpose of this research, a naturalistic driving experiment was carried out involving 20 drivers from 

Belgium, during a 3-month timeframe (from 21/07/2021 to 30/10/2021) and a large database of 757 trips was created. 

As the key output of the i-DREAMS project is an integrated set of monitoring and communication tools for 

intervention and support, state-of-the-art technologies and systems were utilized in order to monitor driving 
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performance indicators. More specifically, data from the Mobileye system (Mobileye, 2022), a dash camera and the 

Cardio gateway (CardioID Technologies, 2022) which records driving behavior along with GNSS signals were used. 

In particular, the Mobileye systems is as a sensor network that measures parameters, like headway distance. 

Information about the current warning stage, as defined by Mobileye, were also collected for comparison with the i-

DREAMS warning stage (i.e. normal driving, danger phase, avoidable accident phase). At the same time, information 

about the current state of the i-DREAMS platform were collected. 

Explanatory variables of risk and the most reliable indicators of task complexity and coping capacity, such as time 

headway, distance travelled, forward collision or weather conditions were assessed. Particular emphasis was given to 

average speed and a new variable, namely STZ_speed, which takes into account the different levels of STZ for speed 

was created. Thus, the dependent variable was the level of the STZ for speed (i.e. STZ_speed), divided into three 

levels (i.e. Normal Driving phase: 0, Dangerous phase: 1, Avoidable Accident phase: 2).  

Table 1 provides an overview of the variables examined along with their corresponding description.  

Table 1. Driving performance indicators along with their corresponding description 

(Source: Mobileye, Cardio, Data processing: NTUA) 

Variable Description 

ME_AWS_hw_measurement_mean Headway measurement (seconds) 

ME_AWS_fcw_mean Forward collision warning 

ME_AWS_pcw_mean Pedestrian collision warning 

GPS_distances_sum Distance travelled (km) 

DEM_evt_ha_lvl_M_mean Medium level harsh acceleration events 

DEM_evt_hb_lvl_M_mean Medium level harsh braking events 

ME_AWS_time_indicator_median Indicates lighting conditions (day, dusk, night) 

ME_Car_wipers_median Indicates weather conditions (wipers on/off) 
 

After an extensive data cleaning and preparation, the next step of the analysis involved a collinearity testing so that 

any highly correlated variables were excluded from the models. When two variables have an absolute value of 

correlation coefficient at least 0.6, then these two variables are highly correlated. Figure 1 indicatively shows the 

correlation coefficients between variables used in the models. No strong correlation among the examined variables 

was identified, as shown below: 

 

Fig. 1. Examined description correlation heatmap 
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3. Methodology 

After the data collection, a feature selection algorithm (i.e. XGBoost) was applied in order to identify the most 

important features for predicting the STZ level. These features were then fed into an NN classifier to identify the STZ 

level. The following subsections describe the algorithms that were used in more detail.  
 

3.1 XGBoost 
 

XGBoost algorithms are optimized supervised ML algorithms encompassing multiple Classification and 

Regression Trees (CART). Due to its adaptability and effectiveness, XGBoost has been consistently outperforming 

competitor methodologies in numerous ML competitions (Nielsen, 2016). The algorithm is described extensively in 

the seminal work of Chen & Guestrin (2016). In short, if a mapping function is considered between variables: 
 

𝑦̂ = 𝑓(𝑥𝑖) (1) 
 

where: 𝑦 is the dependent (or response) variable, 𝑦̂ is the predicted value of the dependent variable and 𝑥𝑖 are the 

independent (or explanatory) 𝑛 variables across 𝑖 observations, then a regression tree ensemble model uses a number 

of functions 𝐾 additively to predict 𝑦, so that: 

𝑦̂ = 𝜑(𝑥𝑖) = ∑ 𝑓(𝑥𝑖)

𝐾

𝑘=1

 (2) 

 

In XGBoost, three particular variable importance metrics were observed: (i) gain, describing the improvement in 

accuracy added by a feature to the branches it is located on, (ii) cover, describing the relative quantity of observations 

(or number of samples) concerned by a feature and (iii) frequency, describing the number of times a feature is used in 

all generated trees.  

Therefore, following good ML practices, the hyperparameters of XGBoost algorithms should initially be tuned 

before their final executions, and their predictions should subsequently be evaluated with model evaluation metrics. 

It is important to note that the highly non-linear, tree ensemble structure of XGBoost makes it resilient against bias 

from multicollinearity effects (Guo et al., 2021). 
 

3.2 Neural Networks 
 

A NN is a simplified model which works by simulating a large number of interconnected processing units that 

resemble abstract versions of neurons. In addition, NNs can approximate a wide range of predictive models with 

minimal demands on model structure and assumption. The processing units are arranged in layers. In particular, these 

models consist of three main parts: an input layer, with units representing the input fields; one or more hidden layers; 

and an output layer, with a unit or units representing the target field(s). The units are connected with varying 

connection strengths. Input data are presented to the first layer, and values are propagated from each neuron to every 

neuron in the next layer. Thus, a result is delivered from the output layer. 

Moreover, NNs generate a prediction for each record, examining individual records, as well as making adjustments 

to the weights whenever it makes an incorrect prediction. The aforementioned processing is repeated many times, and 

the network continues to improve its predictions until one or more of the stopping criteria have been met. It should be 

mentioned that all weights are random and the answers derived from the net are probably nonsensical. 

In the case of aggregating N road safety performance indicators into one combined index, a typical composite 

indicator takes the following form (Nardo et al., 2005): 

𝑦 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (3) 

 

where: y represents the composite index, xi the ith normalized indicator and wi the weight assigned to xi. 
 

3.3 Model evaluation metrics 
 

In order to compare the classification performance of the several configurations (hyperparameters and mix of 

considered inputs), well-established machine learning error metrics were calculated. The following metrics were 
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utilized, based on the confusion matrix, which provides True Positive (TP), True Negative (TN), False Positive (FP) 

and False Negative (FN) metrics. 

 

Accuracy, which represents the proportion of correctly classified observations, is defined as:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)     (4) 

 

Precision, which quantifies the number of positive class predictions that actually belong to the positive class, is 

defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)       (5) 

 

Recall, also known as True Positive Rate, is defined as: 

  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)        (6) 
 

F-means, which combines precision and recall into a single measure, is defined as: 
 

𝐹 − 𝑚𝑒𝑎𝑛𝑠 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (7) 

 

The structure methodology along with the proposed characteristics to estimate the STZ for speed is depicted in the 

following flowchart in Figure 2: 
 

 

Fig. 2. Proposed methodology for the definition of the Safety Tolerance Zone (STZ) for speed 

4. Results 

A feature importance algorithm extracted from Extreme Gradient Boosting (XGBoost) was used to evaluate the 

significance of variables on forecasting STZ and select the most appropriate independent variables. GPS distance 
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travelled, headway measurement and medium level harsh braking events were the most important factors of all 

examined indicators. The parameters of task complexity (i.e. car wipers and time indicator) were less significant, 

while forward collision warning and pedestrian collision warning variables had a negligible impact on STZ speed. 

Figure 3 provides an overview of the feature importance of independent variables based on XGBoost algorithm.  

 

Fig.3. XGBoost feature importance of independent variables 

 

A dataset of 50,000 rows was used and a feed-forward multilayer perceptron NN model was implemented. Based 

on the feature importance and the significance of the relevant indicators, there were three neurons in the input layer 

(i.e. headway measurement, medium level harsh braking events and distance travelled) and one neuron in the output 

layer (i.e. STZ), as shown in Figure 4. 

 

Fig. 4. The multi-layer Neural Network model layout for STZ 

 

Then, a confusion matrix which contains three rows and three columns and reports the number of false positives, 

false negatives, true positives, and true negatives was created. This allows more detailed analysis than the proportion 

of correct classifications (e.g. accuracy, precision, recall). It should be mentioned that accuracy refers to how close a 

measurement is to the true or accepted value, while precision refers to how close measurements of the same item are 

to each other. Table 2 provides the assessment of classification model. 
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Table 2. Assessment of classification model 

 0 1 2 Total 

Accuracy 0.62 0.82 0.75 0.72 

Precision 0.97 0.56 0.40 0.68 

Recall 0.61 0.54 0.46 0.57 

F-means 0.75 0.55 0.47 0.62 
*0 refers to normal phase, 1 refers to dangerous phase, 2 refers to avoidable accident phase 

5. Discussion 

Following the formulation and explanation of the required functions, machine learning algorithms were utilized for 

the STZ prediction regarding the variable of speed and the results were then incorporated into the integrated NN model 

for predicting STZ speed. Based on the confusion matrix calculated, the variable STZ speed holds the result of dividing 

the sum of True Positives and True Negatives over the sum of all values in the matrix. All analyses were conducted 

in R-studio (R Core Team, 2019). The data were split into 75% train and 25% test in order to evaluate the models. It 

should be mentioned that class 0 refers to normal phase, class 1 refers to dangerous phase, while class 2 refers to 

avoidable accident phase. 

Focusing on the results of all classes combined, both classifiers achieve 72% accuracy, 68% specificity and 57% 

recall. First of all, the total accuracy means that the model is 72% accurate in making a correct prediction. Moreover, 

the model was 68% accurate regarding a positive sample and 57% accurate on predicting safety-critical classes (i.e. 

“Dangerous” and “Avoidable Accident”), which means that the model can be trusted in its ability to detect positive 

samples in a moderate degree. 

It should be noted that Normal Driving included the majority of available data and thus was predicted with 97% 

precision and 61% recall, while Dangerous Driving classification presented 56% precision and 54% recall. The 

Avoidable Accident phase, which included only the 4% of the test set, presented the lowest rates, i.e. 40% precision 

and 46% recall in STZ. Overall, the aforementioned findings indicated that both methods could predict adequately the 

Safety Tolerance Zone but the imbalance of the dataset posed difficulties in correctly identifying all classes. 

The current study possesses certain limitations. Firstly, the sample size of the analysis was relatively small and 

could be expanded if the models are going to be generalized. Secondly, drivers’ demographic characteristics, such as 

age, gender, education level, driving experience or mental health state were not included in the analysis. In addition, 

the influence of psychological status of participants, such as driver distraction, anger, sleepiness or fatigue were not 

examined in the present study, as only the driver data from the naturalistic driving experiment were used. Taking into 

consideration that drivers react differently under different circumstances with respect to traffic conditions (i.e. high, 

medium or low traffic volumes), it would be of great interest to investigate average speed using traffic and driver data. 

Future research efforts could consider additional drivers’ age groups, while larger datasets from across the world 

could enhance the analysis procedure. The investigation of other significant factors could be also included in the 

future. For instance, the presence of a passenger, the drug abuse, the alcohol consumption or the seat belt use constitute 

some of the high risk factors that cause road crashes. As per future research directions, the examination of additional 

methods of analysis could be applied. In particular, imbalanced learning as well as factor analysis and microscopic 

data analysis of the database collected could be implemented through econometric techniques, and deep learning. 

6. Conclusions 

The present research aimed to define a Safety Tolerance Zone (STZ) for speed and integrate crash prediction and 

risk assessment. For that purpose, data collected from a naturalistic driving experiment with a sample of 20 drivers 

were utilized. Explanatory variables of risk and the most reliable indicators, such as time headway, distance travelled, 

speed, forward collision, time of the day (lighting indicators) or weather conditions were assessed. 

A feature importance algorithm extracted from Extreme Gradient Boosting (XGBoost) was used to evaluate the 

significance of variables (i.e. headway, forward collision warning, pedestrian collision warning, distance travelled, 

harsh acceleration and braking events as well as lighting and weather conditions) on forecasting STZ. In addition, a 
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Neural Network model was implemented for real-time data prediction, taking into account the most important and 

significant risk indicators. 

Results indicated a strong relationship between STZ_speed and the independent variables of headway, 

distance.travelled and medium harsh braking events. However, imbalanced learning could enhance classification 

results, in order for all three STZ levels to be correctly identified in real-time. 
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