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Abstract 

This paper investigates how much time is spent in three levels of a Safety Tolerance Zone (STZ) for driving speed. 

Towards that aim, a naturalistic driving experiment was conducted and data from a representative sample of 20 Belgian 

car drivers were analyzed. Two classification models (i.e. Conditional Inference Trees and Support Vector Machines) 

and two regression models (i.e. Support Vector Machine Regression) were utilized in order to successfully predict 

initially the STZ levels and then the time that drivers spent in each one. The results indicated that both classification 

models predict STZ levels with 92% accuracy, 96% specificity and 92% recall. Moreover, regression models could 

explain at least 81% of the variance, but further analysis is needed to minimize errors in duration prediction. 
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1. Introduction 

The development of the ‘Safety Tolerance Zone’ (STZ) is the main aim of the European H2020 project i-

DREAMS†. This zone, although abstract in nature, refers to the self-regulated control of transportation vehicles by 
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human operators in the context of crash avoidance, and exploits task complexity indicators along with driver 

background factors for a continuous real-time assessment of safe driving operation. The STZ consists of three phases: 

Normal Driving phase, Danger phase and Avoidable Accident phase. Normal Driving refers to the phase where 

conditions are safe and the crash risk is low, whereas the Danger phase is characterized by changes to normal 

operations and an increased probability of crash. Finally, the avoidable accident phase indicates that a collision 

scenario is developing, but there is still time for the operator to intervene and avoid the crash. 

The objective of the current study is to identify how much time is spent in the three levels of the STZ for driving 

speed. To that aim, the most reliable indicators of task complexity, such as time headway and distance travelled or 

weather conditions are going to be assessed. To achieve this object, a naturalistic driving experiment was conducted 

and data from 20 Belgian car drivers was utilized. In order to predict the time spent in each STZ level, two 

classification models, i.e. Conditional Inference Tree (CIT) and Support Vector Machines (SVMs), were developed. 

The obtained results were evaluated and later implement to Support Vector Regression (SVR) models in order to 

predict the time drivers spent in the three aforementioned levels. 

The paper is structured as follows. Initially, an introduction to the problem is provided. Subsequently, a brief 

description of the utilized data and the methodological approach is given. Then, the results of the statistical analysis 

performed are presented. Lastly, a discussion on significant findings and conclusions on the modelling of the STZ and 

the time spent in each level are highlighted in order to assist researchers and policy-makers. 

2. Background 

Predicting driving behavior by employing mathematical driver models, obtained directly from the observed 

driving-behavior data, has gained much attention in literature. To begin with, Yokoyama and Toyoda (2015) used 

Support Vector Machines (SVMs) with Gaussian kernel and an analysis method of driving behaviors based on large-

scale and long-term vehicle recorder data to support fleet driver management by classifying drivers by their skill, 

safety, physical or mental fatigue and aggressiveness. The entropy-like model and Kullback Leibler divergence model, 

aiming to emphasize the behavioral departure from average drivers, was proposed for the classification. Results 

indicated that these methods can successfully find some informative driving operation behaviors that might cause 

accidents and examined a large scale log of vehicle data recorder. However, the frequencies at rare bins were small 

with short term operation. In the proposed method, operator's geo-location and weather were not taken into 

consideration, while a daily review of vehicle recorder data might not have the ability to distinguish an abnormal and 

unsafe behavior.  

SVM and k-means algorithms have also been applied to recognize normal, aggressive or risk driving style based 

on the trajectory risk levels (Xue et al., 2019). Specifically, Discrete Fourier Transform (DFT), Discrete Wavelet 

Transform (DWT) and statistical methods were adopted to extract the effective features from trajectory data to enable 

the driving style recognition. The results indicated that the proposed SVM method was a more appropriate method, 

which can be effectively used to label the driving style, by comparison with RF, kNN and Multi-Layer Perceptron 

(MLP) algorithms, displaying an accuracy of 91.7%, a precision of 92.8% and a recall of 81.8%. The model with 

machine learning algorithm helped to evaluate the collision risk on the road network with high accuracy and also 

provided real-time decision support to drivers, but road conditions and traffic flow level which influence driving style 

were not taken into consideration. 

Furthermore, Sardá-Espinosa et al. (2017) used a specific kind of decision tree algorithm, called conditional 

inference tree, which was utilized to extract relevant knowledge from data that pertained to electrical motors. The 

model was chosen as the most appropriate due to its flexibility, strong statistical foundation and great capabilities to 

generalize and cope with problems in the data. By looking at the distributions at the leaves of the trees, it was possible 

to assess how coherent the models were with respect to reality. Results indicated that there were a few outlier reports 

at certain nodes, and it was possible to evaluate their data individually and find previously unknown inconsistencies. 

Findings from another interesting study (Das et al., 2009) revealed that conditional inference forests were the most 

appropriate method to identify risk factors affecting crash severity on arterial corridors. The methodology applied was 

quite insightful in identifying the variables of interest in the database (e.g., alcohol/ drug use and higher posted speed 

limits contribute to severe crashes). Results indicated that the failure to use safety equipment by all passengers and 
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presence of driver/passenger in the vulnerable age group (more than 55 years or less than 3 years) increased the 

severity of injuries given a crash had occurred. 

3. Data collection 

In order to identify the time spent in dangerous and avoidable accident phases, a naturalistic driving experiment 

and data from 20 Belgian car drivers was utilized during a 3-month timeframe (from 21/07/2021 to 30/10/2021). Trip 

data were collected from a specific subset of the population of Belgium and additional information, demographic or 

personal characteristics of the examined sample (e.g. gender, age, educational level) were not included in this analysis. 

As a consequence, this study retains a scope of macroscopic examination of driver behavior, considering the trips 

produced by the drivers collectively.  

In-vehicle technologies include dedicated information system tools to understand driving conditions, environment, 

and behavior (Michelaraki et al., 2021). They are able to provide real-time interventions to car drivers in order to 

improve their driving behavior and promote road safety. Visual, auditory and haptic warnings or combinations of both 

were found to enhance driving safety (Katrakazas et al., 2020a). Furthermore, multisensory wearable modules were 

found to have a robust and statistically significant effect of real-time feedback on both drowsiness and driving 

performance ratings. Many reviews also proved that there was a strong motivation for drivers to improve their driving 

style, differentiate their travel behavior from aggressive to normal and reduce their degree of exposure by receiving 

post-trip interventions and monitoring  their driving performance (Katrakazas et al., 2020b). 

In this perspective, data from the Mobileye system (Mobileye, 2022), a CardioDashcam and the CardioGateway 

(CardioID Technologies, 2022) which records driving behavior along with GNSS signals were used. In particular, 

private vehicles were equipped with Mobileye and CardioDashcam in order to monitor the road and the driving process 

and record events for post-trip analysis. In addition, the CardioGateway was a device which was used in order to 

receive the status of the STZ, and it can also provide visual and sound alerts in real-time, allowing as well the 

identification of the driver, in a scenario of multiple drivers per vehicle. Finally, the i-DREAMS application was also 

available on personal smartphones, not only to monitor the smartphone usage, as an indicator of distraction, but also 

for post-trip feedback, to engage drivers on their performance improvement, through a gamification strategy, that 

includes but is not limited to rating and scores, completing the monitoring dimensions targeted by i-DREAMS 

platform. Figure 1 provides a depiction of the i-DREAMS state-of-the-art technology installed in private vehicles. 

 

 

Fig. 1. i-DREAMS suite of technologies installed in private vehicles 

 

Based on the above, explanatory variables of risk and the most reliable indicators of task complexity and coping 

capacity, such as time headway, distance travelled, forward collision warning, pedestrian collision warning, harsh 

acceleration or harsh braking, lighting conditions and weather were assessed. Particular emphasis was given to the 

duration time that each driver spends in each STZ level; thus, a new variable, namely STZ_duration, which takes into 
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account the different levels of STZ was created. Thus, the dependent variable was the STZ_duration, divided into 

three levels (i.e. Normal Driving phase: 0, Dangerous phase: 1, Avoidable Accident phase: 2). A new subset with max 

STZ duration time and the average of the other variables was created. Some descriptive statistics, such as mean, 

standard deviation, maximum value, and minimum value, are provided in Table 1. 

Table 1. Descriptive statistics of the analysis variables 

Variables Description Mean 
Standard 

Deviation 
Min Max 

Sample 

Size 

ME_AWS_hw_measurement_mean  Headway measurement (sec) 69386.55 35611.92 0.31 99999.00 1820 

ME_AWS_fcw_mean      Forward collision warning 0.00 0.00 0.00 0.05 1820 

ME_Car_speed_mean  Average speed (km/h) 90.86 30.00 1.94 137.07 1820 

GPS_distances_sum  Distance travelled (km) 618.57 163.94 10.87 1021.80 1820 

DEM_evt_ha_lvl_M_mean  Medium harsh acceleration events 0.07 0.22 0.00 1.00 1820 

DEM_evt_hb_lvl_M_mean Medium harsh braking events 0.01 0.09 0.00 1.00 1820 

ME_AWS_time_indicator_median Lighting conditions (day/night) 1.45 0.82 1.00 3.00 1820 

ME_Car_wipers_median Weather conditions (wipers on/off) 0.03 0.16 0.00 1.00 1820 

ME_Car_high_beam_median        Headlight beam with a long-range focus 0.00 0.03 0.00 1.00 1820 

duration            Time spent in each STZ level 352.70 1476.50 30.00 37830.00 1820 

STZ   Safety Tolerance Zone for driving speed 0.22 0.46 0.00 2.00 1820 

4. Methodology 

After the data collection, two classification models (i.e. Conditional Inference Tree and Support Vector Machine) 

were developed in order to identify the three phases of Safety Tolerance Zone, i.e. Normal Driving, Danger and 

Avoidable Accident. The predicted STZ values are then implemented in Support Vector Regression models in order 

to successfully predict the time that the driver is going to spent in each level. The structure methodology along with 

the proposed characteristics to estimate the time spent in each of the STZ levels is shown in Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Proposed methodology for the definition of the Safety Tolerance Zone for speed 

 

3.1. Conditional Inference Tree (CIT) Classification 
 

Decision Trees are supervised machine learning algorithms, which represent causes and effect relationships in a 

simplified flowchart structure, are used for both categorical (Classification Tree) and continuous (Regression Tree) 
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data predictions. For the current classification analysis, CIT, an optimized method of the traditional CART-based 

trees, are employed. CITs recursively perform univariate splits of the dependent variable based on a set of covariates, 

similar to the CART-based trees. The main difference is that CITs introduce significant test procedures for the variable 

selection, known as permutations tests, in order to overcome the selection bias towards covariates with many splits or 

missing values (Hothorn et al., 2006). 

 

3.2. Support Vector Classification (SVC) 
 

Support Vector Machines (SVMs) are supervised machine learning algorithms, mostly used for classification 

problems. The objective of SVMs is to estimate the optimal hyperplane, i.e. the decision boundary that distinctly 

classifies the data points, by maximizing the margin between the support vectors of each class, i.e. the closest data 

points to the hyperplane. In case of non-linear mapping, a kernel trick is implemented to transform data into linear 

spaces (Yu & Kim, 2012). The most usual kernel parameter is the Gaussian kernel or Radial Basis Function (RBF). 

The parameter tuning mainly concerns the gamma (γ), which controls the width of the kernel and the cost (C), which 

controls the trade-off between misclassification of training examples and model simplicity (Hsu et al., 2003). 
 

3.3. Support Vector Regression (SVR) 
 

Except for classification problems, SVMs are also utilized to perform machine learning regressions, with the 

introduction of a ε-insensitive loss function, namely a penalty-free error tube around the hyperplane. The epsilon value 

can affect the number of support vectors (SVs) used to construct the regression function. A larger epsilon will result 

in fewer selected SVs, less complex regression estimates and less training time. Similar with the SVC, gamma and 

cost parameters control the kernel width, the model complexity and the prediction accuracy (Vapnik, 1999). 
 

3.4. Validation and quality performance assessment 
 

Regarding the assessment of classification models, the following metrics were utilized, based on the confusion 

matrix, which provides True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) metrics. 
 

Accuracy, which is the proportion of correctly classified observations, is defined as:  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)      (1) 
 

Precision, which is the proportion of true positives among all predicted positives, is defined as: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)        (2) 
 

Recall, which is the accuracy on positive examples, is defined as: 
  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)         (3) 
 

Specificity, which is the accuracy on negative examples, is defined as: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)        (4) 
 

F-means, which combines precision and recall into a single measure, is defined as: 
 

𝐹 − 𝑚𝑒𝑎𝑛𝑠 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)    (5) 
 

G-means, which measures the balance between accuracies for both classes, is defined as: 
 

𝐺 − 𝑚𝑒𝑎𝑛𝑠 = √𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦       (6) 
 

For the assessment of regression models, the performance validity was examined using the following metrics: 
 

The Mean Absolute Error (MAE), which gives the mean of the absolute forecasting error, is defined as:  
 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 (7) 

The Mean Squared Error (MSE), which gives the mean of the squares of the forecasting error, is defined as: 



6 Kallidoni et al. / Transportation Research Procedia 00 (2022) 000–000 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

              (8) 

 

The Root Mean Squared Error (RMSE), which is the square root of the average squared error, is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)2

𝑛

𝑖=1

 
2

  (9) 

 

Coefficient of determination (R2), which is the proportion of the variation in the dependent variable that is 

predictable from the independent variable(s) is defined as: 
 

R² =1 –  
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
         (10) 

 

where: 𝑆𝑆𝑟𝑒𝑠 is the residual sum of squares, and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares (i.e. proportional to the variance of 

the data).  

It should be noted that the reason for selection of RMSE over MSE is that RMSE is a metric on a same scale as the 

dependent variable, instead of squared. The above metrics are easily applicable for both continuous and count data. 

However, metrics measuring deviation based on percentages can produce infinities given count data with zeroes in 

the dataset (also known as the singularity problem). 

5. Results 

4.1. STZ prediction 

 

Table 2 and Table 3 provide the assessment of the two classification models, i.e. Conditional Inference Tree 

Classification and SVC. All analyses were conducted in R-studio (R Core Team, 2019). It should be noted that the 

data were split into 60% train and 40% test in order to evaluate the models. Focusing on the results of all classes 

combined, both classifiers achieve 92% accuracy, 96% specificity and 92% recall. Class 0 includes the majority of 

available data and thus was predicted with 92% precision and 100% recall, while Class 1 presents 98% precision and 

63% recall. Class 2, which includes only the 4% of the test set, presents the lowest rates, i.e. 67% precision and 2% 

recall in tree classification and 45% precision and 4% recall in STZ. Overall, these findings indicate that both methods 

could predict adequately the Safety Tolerance Zone with high precision and slight differences. 

Table 2. Results of STZ from tree classification with the best parameters determined 

 0 1 2 Total 

Accuracy 92% 96% 96% 92% 

Precision 92% 98% 67% 92% 

Recall 100% 63% 2% 92% 

Specificity 48% 100% 100% 96% 

G-means 48% 63% 2% 88% 

F-means 96% 77% 4% 92% 

*0 refers to normal phase, 1 refers to dangerous phase, 2 refers to avoidable accident phase 

Table 3. Results of STZ from SVC with the best parameters determined 

 0 1 2 Total 

Accuracy 92% 96% 96% 92% 

Precision 92% 98% 45% 92% 

Recall 100% 63% 4% 92% 

Specificity 
49% 100% 100% 96% 

G-means 49% 63% 4% 88% 

F-means 95% 77% 7% 92% 

*0 refers to normal phase, 1 refers to dangerous phase, 2 refers to avoidable accident phase 
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4.2. Prediction of time spent in each STZ level 

 

Exploiting the predictions of the above models, the time spent in each STZ level was computed through the 

algorithm depicted in Figure 1. After examination of several alternatives, Support Vector Regression was selected and 

performed twice, utilizing the results of both STZ models. To evaluate the developed regression, the analyzed dataset 

was split to a 75%/25% training/test set ratio. Additionally, a hyperparameter tuning with 10-fold Cross-Validation 

was implemented, aiming to minimize the accuracy metric RMSE. The optimized hyperparameters C, epsilon and 

gamma were also manually tuned and the best performance combination is presented in Table 4.  

Table 4. Results of SVR implementations with the best parameters determined 

 Tree classification SVC 

train 0.8 0.8 

kernel radial radial 

gamma 0.65 0.65 

epsilon 0.1 0.1 

cost 25 25 

MAE 250.85 251.09 

MSE 276726 274938 

RMSE 526.05 524.35 

R2 0.81 0.82 
 

For the testing dataset, the obtained performance metrics were for the first SVM model: MAE = 250.85, MSE = 

276726, RMSE=526.05 and R2= 81.48%, while for the second one: MAE = 251.09, MSE = 274938, RMSE=524.35 

and R2= 81.60%. The values for R2 denotes that the SVM algorithm predicts correctly the time drivers spent in each 

Safety Tolerance Zone for more than 80% of the data. Based on these metrics, SVM yields satisfactory results overall, 

but further models should be implemented to provide minimized MAE, MSE and RMSE metrics.  

6. Discussion 

In the present study, two separate analyses took place. First, two classification models, i.e. Conditional Inference 

Tree Classification and Support Vector Classification, were applied to predict the three phases of Safety Tolerance 

Zone for driving speed, i.e. Normal Driving, Danger and Avoidable Accident, based on naturalistic risk indicators. 

Subsequently, the predicted results were implemented in two versions of Support Vector Regression to predict how 

much time is spent in these levels, accounting the same risk indicators. This forms the main innovation of the present 

research, which is the machine learning analysis of real-time driving indicators in order to predict the duration of 

dangerous driving in terms of car speed.  

With regards to the classification analysis, both performed methods provided accurate predictions with 92% 

accuracy, 96% specificity and 92% recall in total. Looking into regression results, Support Vector Machine models 

presented RMSE=526.0 and R2= 81.48%, using STZ from Conditional Inference Tree Classification and 

RMSE=524.35 and R2= 81.60%, using STZ from Support Vector Classification.  

Nevertheless, there are some limitations and restrictions that should be mentioned. More specifically, the influence 

of socio-demographic characteristics or traffic environment was not taken into consideration in the present study. 

Based on the evidence that drivers react differently under different circumstances with respect to traffic conditions, it 

is of great interest to investigate average speed and duration combining traffic and questionnaire data.  

The investigation of other significant factors could be also included in future research, such as drug abuse, alcohol 

consumption or the use of seat belt. As per further research directions, demographic characteristics such as gender, 

educational level, or driving experience could be also taken into account. Lastly, the experimental sample size could 

be strengthened in terms of size as well as in terms of country, region and transport mode (comparison among countries 

or different transport modes). 
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7. Conclusions 

The current paper aims at providing a real-time prediction protocol for identifying the time that drivers spent in 

dangerous driving situations. By combining task complexity and coping capacity indicators, recorded from a 

naturalistic-driving experiment, state-of-the-art classifiers and regression approaches were exploited for providing 

results even with data collected at a 30-seconds aggregation level. Thus, data from 20 Belgian car drivers was utilized. 

Towards that aim, the most reliable indicators of task complexity, such as time headway and distance travelled or 

weather conditions were assessed. In order to predict the time spent in each STZ level, two classification models, i.e. 

Conditional Inference Trees and Support Vector Machines, were developed. The obtained results were evaluated and 

then implemented to SVR models in order to predict the time drivers spent in each level. 

Overall, the results of the study demonstrated that it is feasible not only to predict the safety level of each driver in 

real-time, but simultaneously predict how much time each driver is going to spend in each level. As the methodology 

presented in this paper is data-driven, researchers and practitioners, working in the field of road safety, could exploit 

the demonstrated results and methods using a large variety of naturalistic driving data, collected by a multitude of 

sensors to make roads much safer in the near future.  

Within the i-DREAMS framework, the conclusions drawn from the current research serve as the base for building 

the mathematical models which are the backbone of the development of the i-DREAMS platform. Constructs to be 

measured are the driver's cognitive and behavioral state in terms of time spent in dangerous driving conditions as well 

as more stable characteristics which are known to impact safe driving and therefore, road safety. Another outcome 

will be a research database with rich information of simulator and on-road drives of hundreds of participants. Since 

the database aims to facilitate future research, it can be argued that if a vast amount of data on test subjects is obtained, 

research findings will be better validated. The testing, calibration and enhancement of the mathematical models during 

the i-DREAMS on-road and simulator experiments can assure not only an efficient and sufficient data analysis, but 

also timely initiation of the safety interventions. 
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