

11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

A Novel Methodology for Crash Hotspot Identification and Network-Wide Safety Ranking

Konstantinos Kaselouris

Civil Transportation Engineer

Together with: Katerina Deliali, Eva Michelaraki, Anastasios Dragomanovits, George Yannis

The i-safemodels project

International Comparative Analyses of Road Traffic Safety Statistics and Safety Modeling

- Project partners:
 - <u>NTUA Department of Transportation Planning & Engineering</u>
 - OSeven Telematics
 - <u>Tongji University</u>
 - Third country partners: University of Central Florida (US), Purdue University (US), Loughborough University (UK), German Aerospace Center, DE
- Duration of the project:
 - 42 months (October 2019 April 2023) ٠
- > Operational Program:
 - Horizon_2020 The EU Union Framework Programme for Research and Innovation - Mobility for Growth

Konstantinos Kaselouris, A Novel methodology for Crash Hotspot Identification and Network-Wide Safety Ranking

European Union European Regiona

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ

EPAnEK 2014-2020

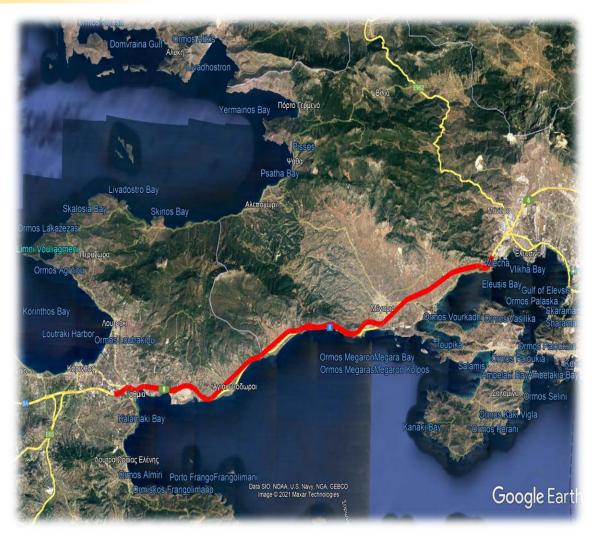
Introduction

- Road crashes constitute a major global societal problem with more than 1,25 million fatalities per year
- Factors such as speeding and non-compliance with traffic regulations can increase the crash risk
- Imperative need for international scientific cooperation in order to identify crash risk factors and respective measures
- Development of an integrated international road safety management system

Konstantinos Kaselouris, A Novel methodology for Crash Hotspot Identification and Network-Wide Safety

Objectives

- Development of advanced road safety standardization models at both:
 - macroscopic (e.g. country, region) and
 - microscopic levels (roadway segments/sites) in developed and developing countries
- Overall network ranking and identifying sections that are safe or less safe



Konstantinos Kaselouris, A Novel methodology for Crash Hotspot Identification and Network-Wide Safety

Data Collection

- Data from Olympia Odos motorway (rural motorway)
 - 50,6km road length
 - Cross-section part with 2 or 3 lanes per direction of traffic plus emergency lane, central median with concrete barrier
- ➤ 3 types of data:
 - Crash data 2015-2019
 - Traffic data as an exposure metric to better understanding of crashes occurance
 - Road design/ road geometry data for segmentation purposes

Experiment Cases (1/2)

Case 1 Homogenous road sections & injury crashes	 Description: Division of Olympia Odos motorway into 13 homogenous sections both in direction Athens - Korinthos and Korinthos - Athens.
Case 2 Homogenous road sections & all crash types	• Description : Same segmentation as in Case 1 and the modification of the original methodology entails the use of all crashes, i.e., injury-related ones and property damage-only ones.
Case 3 Homogenous road sections & injury crashes- different alpha	 Description: Same values and parameters as in Case 1 Different sensitivity alpha (a=0.1, a=0.01)
Case 4 Traffic volume-based sections & injury crashes	• Description : Modifying the segmentation criteria in order to test the performance of the methodology in the setting of network-wide setting

Konstantinos Kaselouris, A Novel methodology for Crash Hotspot Identification and Network-Wide Safety Ranking

Experiment Cases (2/2)

Case 1

Reference data - Road sections					
Data on the road under assessment:					
Time period of accident data (years)	5				
Total n. accidents	23				
Total length of all road sections (km)	46				
Data on the Reference Population to which the I	road sections belong:				
Total km of roads	95				
Total n. accidents	46				
Average AADT	9,969				
Average accident density - calculated (acc./km)	0.10				
Average accident density - input (acc./km)					
Average accident rate - calculated (acc./veh.*km)	2.66				
Average accident rate - input (acc./veh.*km)					
Average AADT - calculated -					

Case 3

Reference data - Road sections						
Data on the road under assessment:						
Time period of accident data (years)	5					
Total n. accidents 489						
Total length of all road sections (km)	46					
Data on the Reference Population to which the ro	Data on the Reference Population to which the road sections belong:					
Total km of roads	95					
Total n. accidents	1,122					
Average AADT	9,969					
Average accident density - calculated (acc./km)	2.36					
Average accident rate - calculated (acc./veh.*km)	64.87					

Case 2

Reference data - Road sections

Data on the road under assessment:						
Time period of accident data (years)	5					
Total n. accidents	29					
Total length of all road sections (km)	49					
Data on the Reference Population to which the road sections belong:						
Total km of roads	95					
Total n. accidents	56					
Average AADT	9,969					
Average accident density - calculated (acc./km)	0.12					
Average accident rate - calculated (acc./veh.*km)	3.24					
Average AADT - calculated	-					

Case 4

Reference data - Road sections						
Data on the road under assessment:						
Time period of accident data (years)	5					
Total n. accidents	633					
Total length of all road sections (km)	49					
Data on the Reference Population to which the ro	oad sections belong:					
Total km of roads	95					
Total n. accidents	1,122					
Average AADT	9,969					
Average accident density - calculated (acc./km)	2.36					
Average accident rate - calculated (acc./veh.*km)	64.87					
Average AADT - calculated	-					

Konstantinos Kaselouris, A Novel methodology for Crash Hotspot Identification and Network-Wide Safety Ranking

Results (1/2)

- 8 sections (35,5km per direction of traffic) are ranked as "Unsure"
- "Low risk" sections for Olympia Odos motorway are mostly the sections that have zero crashes
- "High Risk" sections correspond on average to 11,7% of the total length in Direction "T" and to 18% of the total length in Direction "E"

		Direction	"T"	Direction "E"		
		Total Length (Km)	No. sections	Total Length (Km)	No. sections	
	High Risk	8.20	3	5.20		
Case 1	Unsure	31.20	8	36.20		
	Low Risk	6.60	2	7.40		
	High Risk	3.40	1	20.00		
Case 2	Unsure	36.60	10	28.80		
	Low Risk	6.00	2	0.00		
Case 3 -	High Risk	4.80	2	5.20		
a=0.01	Unsure	34.60	9	36.20		
a-0,01	Low Risk	6.60	2	7.40		
Case 3b -	High Risk	8.20	3	10.60		
a=0,10	Unsure	31.20	8	30.80		
a-0,10	Low Risk	6.60	2	7.40		
Case 4	High Risk	2.20	1	3.00		
	Unsure	43.80	7	45.80		
	Low Risk	0.00	0	0.00		

		Direct	ion "T"	Direction "E"		
		% of total Length	% of tot. sections	% of total Length	% of tot. sections	
	High Risk	17.83	23.08	10.66	15.38	
Case 1	Unsure	67.83	61.54	74.18	61.54	
	Low Risk	14.35	15.38	15.16	23.08	
	High Risk	7.39	7.69	40.98	30.77	
Case 2	Unsure	79.57	76.92	59.02	69.23	
	Low Risk	13.04	15.38	0	0	
Case 3 -	High Risk	10.43	15.38	10.66	15.38	
a=0,01	Unsure	75.22	69.23	74.18	61.54	
	Low Risk	14.35	15.38	15.16	23.08	
Case 3b -	High Risk	17.83	23.08	21.72	23.08	
a=0,10	Unsure	67.83	61.54	63.11	53.85	
a-0,10	Low Risk	14.35	15.38	15.16	23.08	
	High Risk	4.78	12.5	6.15	12.5	
Case 4	Unsure	95.22	87.5	93.85	87.5	
	Low Risk	0	0	0	0	

Results (2/2)

- Relying of different crash types affects the identification of crash hotspots and the safety ranking
- No correspondence between "High Risk" and "Low Risk" sections across Cases 1 and 2
- Injury-related hotspots do not necessarily align with hotspots that include crashes of all severity levels

Direction "T"					Direction "E"			
Length (km)	Case 1 Poisson method: alpha = 0,05	Case 3 Poisson method: alpha = 0,01	Case 3 Poisson method: alpha = 0,10		Length (km)	Case 1 Poisson method: alpha = 0,05	Case 3 Poisson method: alpha = 0,01	Case 3 Poisson method: alpha = 0,10
	Ranking	Ranking	Ranking			Ranking	Ranking	Ranking
3.0	Unsure	Unsure	Unsure		1.4	High Risk	High Risk	High Risk
3.6	Unsure	Unsure	Unsure		2.6	Low Risk	Low Risk	Low Risk
5.4	Unsure	Unsure	Unsure		5.8	Unsure	Unsure	Unsure
2.4	Unsure	Unsure	Unsure		1.8	Low Risk	Low Risk	Low Risk
3.4	High Risk	High Risk	High Risk		5.0	Unsure	Unsure	Unsure
4.0	Low Risk	Low Risk	Low Risk		2.4	Unsure	Unsure	Unsure
3.0	Unsure	Unsure	Unsure		3.0	Low Risk	Low Risk	Low Risk
4.2	Unsure	Unsure	Unsure		2.4	Unsure	Unsure	Unsure
5.2	Unsure	Unsure	Unsure		4.0	Unsure	Unsure	Unsure
4.4	Unsure	Unsure	Unsure		5.4	Unsure	Unsure	High Risk
3.4	High Risk	Unsure	High Risk		3.8	High Risk	High Risk	High Risk
2.6	Low Risk	Low Risk	Low Risk		5.0	Unsure	Unsure	Unsure
1.4	High Risk	High Risk	High Risk		6.2	Unsure	Unsure	Unsure

		Direction "T"				Direction "E"	
	Length (km)	Case 1 - Injury Crashes	Case 2 - All Crashes		Length (km)	Case 1 - Injury Crashes	Case 2 - All
		Ranking	Ranking		Length (Kill)	Ranking	Rank
r	3.0	Unsure	Unsure		1.4	High Risk	Unsi
1	3.6	Unsure	Unsure		2.6	Low Risk	Unsi
	5.4	Unsure	Unsure		5.8	Unsure	High I
	2.4	Unsure	Unsure		1.8	Low Risk	Unsi
	3.4	High Risk	Low Risk		5.0	Unsure	Unsi
	4.0	Low Risk	Unsure		2.4	Unsure	Unsi
	3.0	Unsure	Unsure		3.0	Low Risk	Unsi
	4.2	Unsure	Unsure		2.4	Unsure	Unsi
	5.2	Unsure	Unsure		4.0	Unsure	Unsi
	4.4	Unsure	Unsure		5.4	Unsure	High I
	3.4	High Risk	High Risk		3.8	High Risk	High I
	2.6	Low Risk	Low Risk		5.0	Unsure	High I
	1.4	High Risk	Unsure		6.2	Unsure	Unsi

- Small impact of alpha parameter in the Poisson method
- Only one or two sections are affected per direction of traffic across the different cases

II Crashes

Conclusions

- In all tested variations (as well as in most methodologies based on recorded crash data), a considerable percentage of the analyzed road network, is characterized as "unsure"
- For these sections, useful insights for road safety can be gained only through the application of proactive microscopic road safety analysis
- The choice of alpha parameter is not a critical factor for the classification
- By extending the section length in Case 4, the "zerocrash" sections were eliminated as they included parts of the road with crashes

Konstantinos Kaselouris, A Novel methodology for Crash Hotspot Identification and Network-Wide Safety

11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

A Novel Methodology for Crash Hotspot Identification and Network-Wide Safety Ranking

Konstantinos Kaselouris

Civil Transportation Engineer

Together with: Katerina Deliali, Eva Michelaraki, Anastasios Dragomanovits, George Yannis