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The SmartMaps project
 Project partners:

• National Technical University of Athens, Department 
of Transportation Planning and Engineering 
www.nrso.ntua.gr

• OSeven Telematics www.oseven.io
• Global Link www.globallink.gr

 Duration of the project:
• 30 months (June 2021 – November 2023)

 Operational Program:
• "Competitiveness, Entrepreneurship and Innovation" 

(EPAnEK) of the National Strategic Reference 
Framework (NSRF) – 2nd iteration

http://www.nrso.ntua.gr/
http://www.oseven.io/
http://www.globallink.gr/
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Objectives

 Exploitation of large-scale spatio-temporal data 
from smartphone sensors.

Development of smart driver behaviour maps 
with online information on safety conditions and 
eco-driving (by reducing fuel consumption).

Creation of a comprehensive tool to promote 
safe driving behaviour with application in 
Greece and around the world. 
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Data Collection
Road Geometry Data (OpenStreetMap)
 Length
 Curvature
 Slope

Observed Driving Data – Field (Global Link)
 Seatbelt use
 Helmet use
 Speeding
 Distraction

Naturalistic Driving Data – Telematics (OSeven)
 Harsh braking
 Harsh acceleration
 Speeding
 Distraction

Road Crash Data (ELSTAT)
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Road Geometry Data
 The area of East Macedonia & Thrace was chosen as a 

challenging area in terms of data availability for the 
initial investigations.

 The process of data collection and analysis carried out 
in East Macedonia & Thrace area will be replicated in 
the remaining Greek Regions.

 6099 road segments: 
(Mean Length: 290m, Mean Angle Rate: 0.50 [1/m], 
Total Length 1700km)

 Road Types: (68% residential, 12% tertiary, 7% 
secondary, 3% motorway, 10% other types)

 Slopes:  76% (flat: 0-3%), 10% (mild: 3-5%), 7% 
(medium: 5-8%), 3% (hard: 8-10%), 4% (extreme: >10%).
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Observed Driving Data
 Field measurements on road user behaviour indicators 

in 10 locations (3 motorway, 4 rural, 3 urban).

 Inverse Distance Weighting (IDW) was used twice for 
spatial interpolation in the entire road network 
(motorways, non-motorways).

 IDW estimates the value of a variable at a given location 
by using a weighted average of the surrounding known 
values, with weights determined by their distance to the 
target location, assuming that nearby locations have 
similar values.

 ~3500 observations of passenger car drivers.
(seatbelt, distraction, speeding)

 ~260 observations of PTW drivers (helmet).
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Naturalistic Driving Data - Telematics

 5129 trips in the examined area in 2021.

 Map matching of naturalistic driving data and 
considered road segments.

Naturalistic Driving Data per segment Min. Mean Max.

Trip count 0 32 1272
Speeding rate (sec/trips) 0 0.26 110
Mobile usage rate (sec/trips) 0 0.34 133
Harsh acceleration rate (sec/trips) 0 0.004 1.00
Harsh braking rate (sec/trips) 0 0.007 1.42
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Road Crash Data
 Inaccurate recording of crash locations (lack of coding with 

geographical coordinates in the national database). 
 Aggregate crash data for 5 municipalities 

(Xanthi, Avdira, Myki, Topeiros, Nestos)

Municipality Motorway Crashes 
(2016-2020)

Fatalities 
(2016-2020)

Serious 
Injuries 

(2016-2020)

Slight Injuries 
(2016-2020)

KSI 
(2016-2020)

Xanthi No 108 10 15 128 25
Xanthi Yes 1 0 2 0 2
Avdira No 70 12 20 73 32
Avdira Yes 5 1 2 10 3
Myki No 20 4 6 16 10
Myki Yes 0 0 0 0 0
Topeiros No 32 7 7 36 14
Topeiros Yes 4 3 4 7 7
Nestos No 44 12 9 49 21
Nestos Yes 12 3 4 15 7

 Spatial interpolation of “area crash-related indexes” based on the 
total numbers using IDW twice (motorways, non-motorways).
(Crashes, Fatalities, Killed and Seriously Injured (KSI)).
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Spatial Error Model - Background
 The spatial error model handles the spatial autocorrelation in 

the residuals. 
 The idea is that such errors (residuals from regression) are 

autocorrelated in that the error from one spatial feature can 
be modeled as a weighted average of the errors of its 
neighbors.

 This model can be expressed as:
y = Xβ + u, u = λErr Wu + ε
 where  y   is an (N×1) vector of observations on a response 

variable taken at each of N locations, 
 X is an (N×k) matrix of covariates, 
 β is a (k×1) vector of parameters, 
 u is an (N×1) spatially autocorrelated disturbance vector,  
 ε is an (N×1) vector of independent and identically distributed 

disturbances
 λErr is a scalar spatial parameter.
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Spatial Error Model - Results

 Lambda value of 0.022 is statistically significant, suggesting the error term is spatially autoregressive.

 From the AIC, the spatial error model performs much better than the linear model, as lower AIC 
indicates better fit.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3077 0.0849 -3.6229 0.0003
log(1 + length) 0.0360 0.0039 9.3512 < 2.2e-16
log(1 + slope) -0.0055 0.0059 -0.9399 0.3473

log(1 + efficiency) 0.1067 0.0580 1.8408 0.0657
log(1 + speeding_count) 0.0847 0.0046 18.4841 < 2.2e-16

mobile_usage_rate 0.0064 0.0015 4.3898 <0.001
PC_D_Seatbelt_Yes_p -0.0237 0.0951 -0.2493 0.8031

log(Crashes2016_2020) 0.0233 0.0085 2.7405 0.0061
trip_count 0.0024 0.0000 52.0655 < 2.2e-16

Lambda: 0.022785, LR test value: 5.1845, p-value: 0.022789
AIC: 3891.5, (AIC for lm: 3894.7)

Dependent variable: log(harsh_braking_count + 1)
Type: error 
Coefficients: (asymptotic standard errors)
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Spatial Lag Model - Background
 A spatial lag is a variable that essentially averages the 

neighboring values of a location (the value of each 
neighboring location is multiplied by the spatial weight 
and then the products are summed). 

 It can be used to compare the neighboring values with 
those of the location itself.

 For these spatial lags, we can use the spatial lag model to 
address the spatial autocorrelation in the dependent 
variable:
y = ρLagWy + Xβ + ε

 Where ρLag is a scalar spatial parameter, indicating how 
much a spatial feature is influenced by its neighbors..
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Spatial Lag Model - Results

 Rho value of 0.016 is statistically significant, suggesting there is positive spatial autocorrelation.

 Similarly, the spatial lag model is much better than the linear model, even though it is not as good 
as the spatial error model.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2929 0.0845 -3.4657 0.0005
log(1 + length) 0.0356 0.0038 9.2738 < 2.2e-16
log(1 + slope) -0.0061 0.0059 -1.0367 0.2999

log(1 + efficiency) 0.1048 0.0579 1.8093 0.0704
log(1 + speeding_count) 0.0846 0.0046 18.4784 < 2.2e-16

mobile_usage_rate 0.0064 0.0015 4.4202 <0.001
PC_D_Seatbelt_Yes_p -0.0371 0.0944 -0.3927 0.6945

log(Crashes2016_2020) 0.0218 0.0085 2.5734 0.0101
trip_count 0.0024 0.0000 51.9864 < 2.2e-16

Rho: 0.016061, LR test value: 3.8597, p-value: 0.04946
AIC: 3892.8, (AIC for lm: 3894.7)

Dependent variable: log(harsh_braking_count + 1)
Type: lag 
Coefficients: (asymptotic standard errors)
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Key Conclusions
 Road geometry characteristics, naturalistic driving 

data, observed driving data and historical road 
crashes were combined for road safety modelling.

 Significant positive effects of segment length, 
speeding events, and trip count on harsh braking 
events count.

 Spatial models provide a better fit to the data than 
non-spatial models. 

 Methodology applied in East Macedonia & Thrace 
area can be extended to other Greek regions and 
national road network.
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