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Abstract 
 
The i-DREAMS project aims to setup a framework for the definition, development and validation of a context-
aware ‘Safety Tolerance Zone (STZ)’ in order to keep drivers within the boundaries of safe operation. The 
objective of this study is to compare and contrast two machine learning methods (i.e., Long-Short-Term-Memory 
Networks and a shallow Neural Network) to identify the safety level of participants driving naturally within the i -
DREAMS on-road field trials. To achieve this objective a number of trips from a sample of 30 German drivers 

were collected and fed to the aforementioned machine learning methods in order to identify factors leading to risky 
behavior throughout the experiment stages. The results confirm the positive effect of i-DREAMS real-time and 
post-trip interventions in improving driving behavior significantly, whereas Neural Networks seem to outperform 
the rest of the algorithms considered. 

 
Keywords: On-road field trials, driving behavior, Long-Short-Term-Memory Network (LSTM), Neural Network, 

Machine Learning 

 

Περίληψη 
 
Το έργο i-DREAMS στοχεύει στη ανάπτυξη ενός πλαισίου ορισμού, ανάπτυξης και επικύρωσης μιας "Ζώνης 
ανοχής ασφάλειας (STZ)" με γνώμονα το περιβάλλον, προκειμένου οι οδηγοί να παραμένουν εντός των ασφαλών 
ορίων λειτουργίας. Στόχος της παρούσας μελέτης είναι η σύγκριση και η αντιπαράθεση δύο μεθόδων μηχανικής 
μάθησης (δηλ. Δίκτυο μακράς βραχυπρόθεσμης μνήμης και ένα Νευρωνικό δίκτυο) για τον προσδιορισμό του 
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επιπέδου ασφάλειας των συμμετεχόντων που οδηγούν στο πλαίσιο των δοκιμών πεδίου του έργου i-DREAMS. 
Για την επίτευξη αυτού του στόχου συλλέχθηκε ένας αριθμός διαδρομών από ένα δείγμα 30 Γερμανών οδηγών 

και τροφοδοτήθηκε στις προαναφερθείσες μεθόδους μηχανικής μάθησης, προκειμένου να εντοπιστούν οι 
παράγοντες που οδηγούν σε επικίνδυνη συμπεριφορά κατά τη διάρκεια των πειραματικών σταδίων. Τα 
αποτελέσματα επιβεβαιώνουν τη θετική επίδραση των παρεμβάσεων του i-DREAMS σε πραγματικό χρόνο και 
σημαντική βελτίωση της οδηγικής συμπεριφοράς μετά την διαδρομή, ενώ τα νευρωνικά δίκτυα φαίνεται να 
υπερτερούν έναντι των υπόλοιπων εξεταζόμενων αλγορίθμων. 

 
Keywords: Δοκιμές στο πεδίο, οδηγική συμπεριφορά, Δίκτυο μακράς βραχυπρόθεσμης μνήμης (LSTM), 

Νευρωνικό Δίκτυο, Μηχανική μάθηση 

 

1. Introduction 

Road safety constitutes a major public health issue nowadays, with approximately 1.3 million human 

lives lost each year from crashes. Additionally, 20 to 50 million people experience non-fatal injuries 

that may lead to short-term or long-term diseases or disabilities (World Health Organization, 2018). 

Prior research suggests that driver behavior is a contributory factor in over 90% of crashes (Petridou & 

Moustaki, 2000). Consequently, there is a significant benefit in driving behavior analysis as an 

important part of traffic safety research (Ellison et al., 2015). As a result, the European Union and the 

World Health Organization have established a goal of decreasing fatal traffic crashes by 50% between 

2021 and 2030, with a special emphasis on the contribution of emerging technology in the field of road 

safety. 

 

Road safety is influenced by a multitude of risk factors, including the driver's state, environmental 

conditions, and traffic circumstances (Aljanahi et al., 1999; Wegman, 2017). Despite advancements in 

technology and infrastructure, human error remains a significant contributor to traffic collisions 

(Staubach, 2009). However, the ongoing progress in the domain of autonomous vehicles seeks to 

enhance road safety by minimizing the reliance on human drivers (Mahajan et al., 2020). Furthermore, 

the implementation of intelligent driving behavior monitoring systems, which enable real-time 

interventions, has demonstrated remarkable efficacy in improving road safety (Michelaraki et al., 2021). 

By combining the benefits of autonomous vehicles and intelligent monitoring systems, there is a strong 

potential for mitigating the impact of human error and creating a safer road environment for all users.  

 

In recent times, the research community has played a vital role in the progression of Intelligent 

Transportation Systems (ITS) and specifically in the development of Connected and Automated 

Vehicles (CAVs). Numerous published studies have focused on comprehending the impact of various 

factors on unsafe driving, aiming to create suitable models for identifying risky driving behavior and 

establishing a framework for interventions within the vehicle. While there have been proposals for 

various interventions both during and post trip (Michelaraki et al., 2021; Roy et al., 2022), there is a 

lack of personalization in these interventions and a direct connection between real-time driving behavior 

and the activation of interventions. 

 

The primary goal of the i-DREAMS project, funded by the European Commission Horizon2020 

initiative (https://idreamsproject.eu/), is to establish, develop, test, and validate a 'Safety Tolerance Zone' 

(STZ) to ensure safe driving behavior`. By continuously monitoring risk factors associated with task 

complexity (e.g., traffic conditions and weather) and coping capacity (e.g., driver's mental state, driving 

behavior, and vehicle status), i-DREAMS aims to determine the appropriate level within the STZ and 

create interventions that maintain the driver's operation within acceptable safety limits. The STZ 

comprises three levels: 'Normal', 'Dangerous', and 'Avoidable Accident'. The 'Normal' level implies that 
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the likelihood of a crash is low, while the 'Dangerous' level indicates an increased possibility of a crash, 

though it is not inevitable. The 'Avoidable Accident' level suggests a high probability of a crash 

occurring, but there is still time for drivers to take action and prevent it. The key distinction between the 

'Dangerous' and 'Avoidable Accident' levels lies in the more urgent need for intervention in the 

'Avoidable Accident' level. 

 

Based on the i-DREAMS principles and objectives, this paper aims to develop, compare, and contrast 

machine learning techniques to identify the level of risky driving behavior. To achieve this goal several 

trips from a sample of 30 German drivers were collected and two machine learning classifiers were 

developed (i.e., LSTM and a Neural Network). 

 

The paper is structured in the following manner. Firstly, it begins with a thorough introduction to the 

project, highlighting its main objective. Next, a comprehensive review of existing literature on driving 

behavior analysis using machine learning techniques is presented. The process of collecting data is then 

explained in detail. The research methodology is outlined, including the theoretical principles 

underlying the models employed. Finally, the results of the study are presented, followed by significant 

conclusions regarding the association between key factors like task complexity and coping capacity on 

risk. 

2. Background 

Simulator studies and naturalistic driving studies (NDS) approaches have been widely utilized in recent 

years to examine unsafe driving behavior (Osman et al., 2019). According to (Wang et al., 2020), there 

are certain traffic, driver, vehicle, and environmental factors that affect the risk of driving. Furthermore, 

recent studies focus on identifying driving behaviors and categorizing them as risky or safe in order to 

improve road safety (Yang et al., 2021). Researchers utilized models to evaluate unsafe driving behavior 

based on the driver's state (Ghandour et al., 2021) and based on specific features of the driver, such as 

demographics (Song et al., 2021), in a more anthropocentric approach. Other studies (Shangguan et al., 

2021; Shi et al., 2019; Yang et al., 2021) have proposed models for identifying unsafe driving based on 

characteristics related to driving behavior, such as speed, time to collision, and time to headway. 

 

Furthermore, the continuous development of Intelligent Transportation Systems (ITS) as well as the 

increasing availability of real-time data streams from in-vehicle sensors, GPS systems, and mobile 

devices has opened new opportunities for the application of machine learning models in real-time risk 

prediction and Advanced Driver Assistance Systems (ADAS). By continuously analyzing sensor data 

and contextual information, these models can provide timely alerts and warnings to drivers, assist in 

making safer driving decisions, and contribute to the prevention of crash. 

 

In recent years classification models have been widely used to identify risky driving behavior. Several 

studies have explored the application of ML and DL techniques for classifying risky driving behaviors. 

One of the primary advantages of employing machine learning models for studying risky driving 

behavior is their ability to handle complex, nonlinear relationships within datasets. For example, 

(Shangguan et al., 2021) used four classifiers (i.e., RF, XGBoost, SVM and MLP) to predict risky 

driving behavior based on four safety levels. (Yang et al., 2021) employed two classification algorithms 

to identify and assess different levels of unsafe driving behavior utilizing a driving simulator dataset. 

Moreover, (Saleh et al., 2017) developed an LSTM-based model to identify driving behavior using 

sensor data, based on three levels of driving behavior (i.e., normal, drowsy, or aggressive) defined by 

the authors.  
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While ML and DL techniques offer promising results for classifying risky driving behaviors, there are 

several challenges to consider. These include data collection and preprocessing, feature selection, model 

generalizability, and interpretability of the learned representations. Overcoming these challenges is 

essential to ensure the reliability and applicability of ML and DL models in real-world driving scenarios.  

 

In conclusion, ML and DL models have emerged as valuable tools for understanding, predicting, and 

addressing risky driving behavior. By leveraging the power of advanced algorithms and vast amounts 

of data, these models hold the potential to revolutionize road safety efforts, reduce crashes, and save 

lives. Continued research, development, and collaboration in this field are crucial for fully realizing the 

benefits of advanced algorithms on safer driving behaviors and road safety improvements.  

3. Data Description 

Within the i-DREAMS project, a naturalistic driving experiment was carried out involving 30 drivers 

from Germany and a large database of 5,344 trips and 84,434 minutes was created. The on-road trial 

experiment was carried out in four phases: 

 

 Phase 1: monitoring - 30 German car drivers, 1,397 trips (23,617 minutes) 

 Phase 2: real-time interventions - 30 German car drivers, 1,322 trips (19,469 minutes) 

 Phase 3: real-time & post-trip interventions - 30 German car drivers, 1,129 trips (17,704 

minutes) 

 Phase 4: real-time. post-trip interventions & gamification - 30 German car drivers, 1,496 trips 

(23,644 minutes) 

 

Figure 1 provides an overview of the different phases of the experimental design of the i-DREAMS on-

road study. 

 
Figure 1: Overview of the different phases of the experimental design of the i-DREAMS on-road study 
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In addition to the vehicle data, questionnaire data were also collected both before and after the trial. 

Information collected pre-trial included:  

 Screening questionnaire: driver details (age, gender, driving experience, employment status, 

etc.), vehicle details (model, age, etc.).  

 Entry questionnaire: current use of and opinions on different ADAS, driving style and 

confidence, opinions on driving and safety, self-assessment of driver’s risk-taking behaviors 

(e.g., speeding, mobile phone use), crash and offence history, sleepiness and driving, medical 

conditions.  

 

Information collected post-trial included: 

 User experience questionnaire: opinions on the i-DREAMS system - except for Greece, in 

which an alternative driving experiment without the use of i-DREAMS in-vehicle system was 

used - (ease of use, works as described), opinions on the i-DREAMS smartphone app (ease of 

use, usefulness).  

 Exit questionnaire: opinions on the i-DREAMS system (improvement of driving, usefulness, 

trust, clarity of warnings, etc.), experience of driving situations, driver behavior (driving and 

non-driving related behaviors), overall experience rating. 

4. Methodological Overview 

4.1 Neural Networks (NNs) 

An Artificial Neural Network (ANN) is a highly complex, non-linear, parallel processor with a natural 

propensity for storing experimental knowledge and making it available afterward. A multi-layer 

perceptron ANN is typically made up of three kinds of layers: an input layer, an output layer, and one 

or more hidden layers. The input layer receives the values of the explanatory variables, i.e., the input 

data. The hidden layer, made up of m neurons, adds up the weights of the input values of the various 

explanatory variables, and calculates the complex association patterns. With regards to the hidden layer, 

activation function applies a non-linear map to the linear transformation of input values, introducing 

nonlinearity into the model. A single hidden layer is usually enough for crash analysis applications, but 

the definition of the number of neurons in it is generally the object of experimentation. For the output 

layer, the values of the various hidden neurons are summed, and the network's output values are 

presented (Garefalakis et al., 2022; Silva et al., 2020). 

 

4.2 Long Short-Term Memory (LSTM) Networks 

Long Short-Term Memory Models (LSTMs) are a special kind of RNN, capable of learning long-term 

dependencies (Girma et al., 2019). They work tremendously well on a large variety of problems and are 

now widely used. LSTMs are explicitly designed to avoid the long-term dependency problem. 

Remembering information for long periods of time is practically their default behavior and not 

something they struggle to learn. All recurrent LSTMs have the form of a chain of repeating modules 

of neural network.  
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LSTMs use ”memory block” in the hidden unit to capture the long-term dependencies that may exist in 

the data (Girma et al., 2019). This memorizing capability of LSTM has shown the best performance 

across many time-series tasks, such as activity recognition, video captioning, language translation. The 

cell state (memory block) of LSTM has one or more memory cells that are regulated by structures called 

gates, which control the addition of new sequential information and the removal of useless ones to and 

from memory, respectively. Gates are a combination of sigmoid activation functions and an element -

wise multiplication or Hadamard product and they are used to control information that passes through 

the network. An LSTM is often composed by three gates, namely forget, input, and output gates, which 

are described below: 

 

 Forget gate: Forget gate decides what information to keep or remove from the cell state. The 

first step in LSTM is to decide what information are going to throw away from the cell state. 

This decision is made by a sigmoid layer called the “forget gate layer.”  

 Input gate: Input gate decides what new information to add and how to update the old cell state, 

Ct-1, to the new cell state Ct for the next memory block. This has two parts. First, a sigmoid layer 

called the “input gate layer” decides which values we’ll update. Next, a tanh layer creates a 

vector of new candidate values, Ct', that could be added to the state. Then the old cell state Ct−1 

updates into the new cell state Ct and the old state is multiplied by ft.  

 Output gate: Output gate filters out and decides which information to produce as an output from 

a memory block at a given time step t. This output will be based on cell state but will be a 

filtered version. First, a sigmoid layer, which decides what parts of the cell state are going to 

output, is run. Then, the cell state, used as tanh (to push the values to be between −1 and 1) and 

multiply it by the output of the sigmoid gate, in order to take and output the parts needed. 

 

4.3 Model goodness-of-fit measures 

For the classification models the confusion matrix and the corresponding metrics will be utilized. In 

order to compare the classification performance of the several configurations (hyperparameters and mix 

of considered inputs), well-established machine learning error metrics were calculated. The following 

metrics were utilized, based on the confusion matrix, which provides True Positive (TP), True Negative 

(TN), False Positive (FP) and False Negative (FN) metrics. The classification algorithms are evaluated 

using the accuracy, precision, recall, f1-score, and false alarm rate as defined below.  

 

Accuracy, which represents the proportion of correctly classified observations, is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
     (1) 

 

Precision, which quantifies the number of positive class predictions that actually belong to the positive 

class, is defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 (2) 

 

Recall, also known as True Positive Rate, is defined as follows: 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (3) 

 

F1score, which combines precision and recall into a single measure, is defined as follows: 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑥 (𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+(𝑅𝑒𝑐𝑎𝑙𝑙)
   (4) 

 

False alarm rate is defined as follows: 

 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
              (5) 

5. Results 

5.1 Neural Networks (NNs) 

In order to investigate if real-time prediction of the STZ is also feasible, two feed-forward multi-layer 

perceptrons were also applied on a subset from the total dataset of the German car drivers (Ndrivers=30, 

trips=5340). In order to identify the effect of phase on the prediction, the analysis considered phase as 

an independent variable and the analysis was performed for the whole dataset, rather than per phase as 

the analyses in Chapter 4. The algorithms had an accuracy of more than 94% with a false alarm rate of 

up to only 6%. The Neural Networks (NNs) classification algorithms acted as preparatory step towards 

the LSTM classification that is shown in the next subsection. The predictors utilized for the models are 

shown in Table 1. 

Table 1: Predictors utilized for Neural Networks 

Variables Headway Speeding 

Phase x x 

Age x x 

Average speed x x 

Harsh acceleration x x 

Harsh events low x  

Headway level total x  

Speeding level 0   

Speeding level total   

 
After the application of the models, the identified confusion matrix was produced for the two 

independent variables (i.e. headway and speeding), as shown in Table 2. 

Table 2: Confusion data matrix for headway and speeding 

Variable TP FP FN TN Sum 

Headway 33378 0 1400 82 34860 

Speeding 2178 1987 63 30632 34860 

From the confusion matrix, the following metrics were estimated and are depicted in Table 3. 
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Table 3: Assessment of classification model for headway and speeding 

Variable Accuracy Precision Recall f1-score G-Means FA Rate 

Headway 95.98% 100.00% 95.97% 97.95% 97.97% 0.00% 

Speeding 94.12% 52.29% 97.19% 68.00% 71.29% 6.09% 

 

Figure 2 illustrates the performance of Neural Network classification on headway and speeding STZ 

level.  

 
Figure 2: Performance of Neural Network classification for headway and speeding 

 

The results shown in Figure 2: Performance of Neural Network classification for headway and speeding 

 are in line with relevant literature on real-time safety evaluations (Silva et al., 2020), as well as previous 

project analyses utilized on simulator data (Garefalakis et al., 2022). Precision, f1-score and G-means 

metrics are probably lower due to the greater amount of ‘normal’ STZ level instances as compared with 

‘dangerous’ conditions. 

 

5.2 Long Short-Term Memory (LSTM) 

5.2.1 Speeding 

 

Following the development of simple NN classifiers, Long Short-Term Memory Networks (LSTMs) 

were trained in order to predict ‘dangerous’ speeding level. As shown in Table 4, the speeding LSTM 

did not achieve significant results, only reaching 57.82% accuracy after the developed trials. Although 

LSTM is often used for sequence modeling, it is worth mentioning that the sequence may not always be 

explicitly visible in the predictors themselves. In some cases, the sequence may be implicit in the way 

that the data is organized or structured. For example, in time series data, the sequence is often defined 

by the order in which the data was collected over time. In this case, the LSTM is used to model and 
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make predictions based on the temporal dependencies and patterns in the data. In other cases, the 

sequence may be less obviously related to time, but still exist in the way that the data is organized. For 

example, in natural language processing, the sequence may be defined by the order of words in a 

sentence or text document. Thus, the sequence is implicit in the way that the data was collected or 

organized, even if it's not immediately apparent from the predictors themselves. An LSTM could still 

be used in this case to model and make predictions based on the implicit sequence in the data. The 

predictors utilized for the models applied for speeding are shown in Table 4. 
 

Table 4: Predictors utilized for Long Short-Term Memory Networks for speeding 

Variables v1 v2 v3 v4 v5 

Phase x x x x x 

Age x x x x x 

Average speed x x  x x 

Harsh acceleration events x x x  x 

Harsh acceleration x x x   

Speeding level 0 x x x   

Speeding level 1     x 

Speeding level total x x x x x 

Headway level total    x  

Accuracy (%) 57.82 57.82 57.82 57.11 57.82 

 

5.2.2 Headway 

 

Similarly with speeding, LSTMs could not find the dangerous level of headway as well. Perhaps this is 

because of a lack of data or speed-related indicators to identify the different levels. The predictors 

utilized for the models applied for headway are shown in Table 5. 

 
Table 5: Predictors utilized for Long Short-Term Memory Networks for headway 

Variables v1 v2 v3 v4 

Phase x x x x 

Age x x x x 

Average speed  x x x 

Harsh events high x  x  

Harsh events low  x   

Harsh acceleration  x   

Headway level -1   x  

Headway level 0 x    

Headway level total x x x x 
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Variables v1 v2 v3 v4 

Speeding level total    x 

Accuracy (%) 57.39 55.5 57.82 57.82 

 

It should be noted that an accuracy of less than 60% may not be sufficient for a high-performance 

intervention system, as it could result in a relatively high number of false alarms or missed detections. 

However, the required level of accuracy depends on the specific use case and the risks involved. For 

instance, in a system designed to detect potential crashes or safety hazards, a higher level of accuracy 

may be necessary in order to ensure the safety of drivers and other road users. As for the use of prediction 

models by an intervention system, the output of the models can be used in a variety of ways. In particular, 

the prediction models can generate real-time alerts or warnings to drivers or other stakeholders, such as 

traffic control centers or emergency responders. The models can also be used to trigger automated 

interventions, such as adjusting the speed of a vehicle or activating safety features like automatic braking 

systems. In addition, the output of prediction models can be used for ongoing analysis and monitoring 

of road safety performance, in order to identify trends and patterns that can inform future interventions 

and improvements. 

6. Conclusions 

This paper aims to develop, compare and contrast machine learning techniques in order to identify the 

level of risky driving behavior. To achieve this goal, several trips from a sample of 30 German drivers 

were collected and two machine learning classifiers were developed (i.e., LSTM and a Neural Network).  

 

Predictive real-time analyses demonstrated that it is possible to predict the level of STZ with an accuracy 

of up to 95%, while post-trip explanatory studies showcased the capacity of state-of-the-art econometric 

models to shed light on the complex relationship of risk with the interdependence of task complexity 

and coping capacity. 

 

Machine learning algorithms, such as Neural Networks, can be trained using the i-DREAMS data to 

recognize specific driving patterns associated with safe driving. These algorithms proved to be the best 

approach to capture complex relationships between various driving parameters and predict the 

likelihood of potential risks or crashes. Once the ensemble of algorithms was trained and validated, real-

time applications have been deployed, such as in-vehicle systems or mobile applications in order to 

provide drivers with immediate feedback and guidance on their driving behavior. This feedback could 

help drivers make informed decisions, improve their driving habits, and reduce crash risk. 

 

The identification of safe driving behavior through the ensemble of machine learning algorithms and i-

DREAMS data has the potential to revolutionize road safety interventions. By leveraging the power of 

data-driven insights and advanced analytics, this approach can contribute to creating a safer driving 

environment, reducing the number of crashes, and ultimately saving lives. 

 

Future research could consider incorporating contextual information into the models. This could include 

factors such as weather conditions, road infrastructure, and traffic patterns, to enhance the accuracy and 

applicability of the models in diverse driving environments. In addition, personalized driver modeling 

could also be another area of interest, where individual driver characteristics like experience, age, and 

driving style are taken into account. This can help tailor interventions and feedback to each driver's 

specific needs, leading to more effective behavior change.  
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It is worth noting that analyzing the long-term impact of interventions based on safe driving behavior 

identification is also crucial. Evaluating the effectiveness of these interventions in reducing crash rates, 

injuries, and overall road safety can provide insights into their sustained effects over time. Furthermore, 

investigating the implementation and evaluation of real-time intervention systems based on safe driving 

behavior identification is essential. Assessing the effectiveness of these systems in providing timely 

feedback, alerts, or interventions to drivers can help prevent potential crashes or hazardous situations. 

 

Lastly, the consideration of human factors and driver engagement is important as well. Understanding 

how drivers perceive and react to interventions based on safe driving behavior identification, and 

optimizing their effectiveness while minimizing potential negative impacts, can enhance their 

acceptance and engagement. The generalizability and scalability of the developed models and 

interventions should also be assessed. Exploring their applicability across diverse populations, 

geographic locations, and vehicle types, as well as addressing potential challenges and adaptations, will 

ensure their broader impact in improving road safety. By addressing these research areas, it is easier to 

understand safe driving behavior identification, refine intervention systems, and ultimately contribute 

to improving road safety, reducing the number of crashes, and preventing injuries on our roads. 
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