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Abstract 
 

The i-DREAMS project developed a Safety Tolerance Zone (STZ) to define the point of safe self-regulated control, 

taking into account the significant impact of the human factor on safe driving behavior. This research aims to 

analyze the impact of critical factors like task complexity and coping capacity on risk. A naturalistic driving 
experiment was conducted in Greece, utilizing raw data from thousands of trips by representative drivers. Results 

showed that demographic characteristics, such as gender and age, correlated negatively with coping capacity, 

indicating lower levels in male and elderly drivers. Factors like vehicle age, fuel type, and trip difficulty increased 

task complexity. Coping capacity and task complexity were strongly correlated with driving risk. This paper will 

provide policy recommendations for implementing the i-DREAMS platform to improve road safety in these areas. 
 

Keywords: i-DREAMS Project; Task Complexity; Coping Capacity; Generalized Linear Models; Structural 

Equation Models. 
 

Περίληψη 
 

Το έργο i-DREAMS ανέπτυξε μια ζώνη ανοχής ασφάλειας (STZ) για τον καθορισμό του σημείου ασφαλούς 

αυτορυθμιζόμενου ελέγχου, λαμβάνοντας υπόψη τη σημαντική επιρροή του ανθρώπινου παράγοντα στην ασφαλή 

οδηγική συμπεριφορά. Η παρούσα έρευνα αποσκοπεί στην ανάλυση της επίδρασης κρίσιμων παραγόντων όπως 
η δυσκολία στο έργο της οδήγησης και η ικανότητα αντιμετώπισης του κινδύνου. Ένα πείραμα σε πραγματικές 

συνθήκες οδήγησης διεξήχθη στην Ελλάδα και χρησιμοποιήθηκαν δεδομένα από χιλιάδες διαδρομές. Τα 

αποτελέσματα έδειξαν ότι τα δημογραφικά χαρακτηριστικά (όπως φύλο, ηλικία) συσχετίστηκαν αρνητικά με την 

ικανότητα αντιμετώπισης, υποδεικνύοντας χαμηλότερα επίπεδα στους άνδρες και τους ηλικιωμένους οδηγούς. 

Παράγοντες όπως η ηλικία του οχήματος, ο τύπος καυσίμου και η δυσκολία του ταξιδιού αύξησαν την δυσκολία 

στο έργο της οδήγησης. Η ικανότητα αντιμετώπισης και η πολυπλοκότητα των καθηκόντων συσχετίστηκαν 

έντονα με τον οδηγικό κίνδυνο. Η μελέτη θα παρέχει συστάσεις πολιτικής για την εφαρμογή της πλατφόρμας i-

DREAMS για τη βελτίωση της οδικής ασφάλειας σε αυτές τις περιοχές. 

 

Λέξεις κλειδιά: έργο i-DREAMS; δυσκολία του έργου της οδήγησης; ικανότητα αντιμετώπισης; Γενικευμένα 

Γραμμικά Μοντέλα; Δομικά Μοντέλα Εξισώσεων.  
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1. Introduction 

Every year, the lives of approximately 1.3 million people are cut short as a result of a road traffic crash. 

Between 20 and 50 million more people suffer non-fatal injuries, with many incurring a disability as a 
result of their injury (World Health Organization, 2022). Driver behavior plays a significant role in over 

90 percent of these crashes (Ivers et al., 2009). Consequently, there is immense value in identifying 

drivers who engage in unsafe practices, as they pose a greater risk to themselves and other road users. 
Various approaches have been employed for this purpose, including the development of demographic 

profiles (Wundersitz & Hutchinson, 2008), self-reported behavior and risk preferences (Pajković & 

Grdinić-Rakonjac, 2021), as well as assessments of personality and risk perceptions (Zhang et al., 2020). 

 
Based on the abovementioned, the primary objective of the European Horizon2020 i-DREAMS project 

is to define, develop, test, and validate a ‘Safety Tolerance Zone (STZ)’ to keep drivers within 

acceptable boundaries of safe operation. By continuously monitoring risk factors associated with task 
complexity (such as traffic conditions and weather) and coping capacity (including the driver's mental 

state, driving behavior, and vehicle status), i-DREAMS aims to ensure safe driving behavior by 

triggering real-time and post trip interventions. 
 

The STZ is divided into three separate levels according to the level of risky driving behavior (i.e. 

‘Normal’, ‘Dangerous’ and ‘Avoidable Accident’). Firstly, the ‘Normal’ level refers to the scenario of 

low crash risk and therefore safe driving behavior. Secondly, the ‘Dangerous’ level concerns the 
increased likelihood of crash occurrence, however the crash is not inevitable. Lastly, the ‘Avoidable 

Accident’ level indicates a strong likelihood of a potential crash happening, yet there remains sufficient 

time for drivers to act and prevent the collision. 
 

Specifically, the in-vehicle interventions are meant to assist and support vehicle operators in real-time 

(i.e., while driving). Depending on how imminent crash risks are, a distinction can be made between a 

‘normal driving’ phase, a ‘danger’ phase, and an ‘avoidable accident’ phase. In the normal driving phase, 
no abnormalities in a vehicle operator’s driving style are detected by the monitoring pillar of the i-

DREAMS platform, and no sign of a crash course initiating is present. Consequently, no real-time 

intervention is required. In the danger phase, abnormal deviations from the vehicle operator’s driving 
style are detected by the i-DREAMS monitoring module, and the potential for a crash course to unfold 

is present. A warning signal is to be issued in that case. In the avoidable accident phase, deviations from 

normal driving have evolved even further, and the risk for a crash to occur will become imminent if the 
vehicle operator does not adapt appropriately and immediately to the present circumstances. A more 

intrusive warning signal is provided to support vehicle operators in avoiding a collision. 

 

With regards to post-trip interventions, these are not operational while driving, but they are based on 
what happens during a trip. They hinge upon all the raw data that is captured by the i-DREAMS sensors, 

which is further processed and fused into information about a vehicle operator’s driving style, how it 

evolved during a trip, how many (safety-critical) events occurred, and in which circumstances these 
events happened. This information can be further translated into feedback consultable for vehicle 

operators via an app in a pre- or post-trip setting. To establish a longer-term relationship with individual 

vehicle operators, app-supported feedback can be combined with the use of a web-based coaching 
platform, containing gamification features meant to motivate drivers to work on a gradual and persistent 

improvement of their driving. 

 

Following the objective of the i-DREAMS project, this study aims to examine the impact of task 
complexity and coping capacity on risk. To achieve this goal, it is necessary to extract a comprehensive 
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set of quantitative effects of indicators, describing the impacts of vehicle, operator, and context 
characteristics on risk under different conditions. Therefore, an integrated model is applied to gain an 

in-depth understanding of inter-relationship with risk. 

 
The paper is structured as follows. At the beginning, a detailed description of the project and its general 

objective is provided. Subsequently, an extensive literature review is presented concerning the analysis 

of driving behavior utilizing statistical methods. In addition, the data collection process is thoroughly 
presented. The research methodology is then described, which includes the theoretical background of 

the models used. Finally, the results are presented and are followed with significant conclusions about 

the relationship between critical factors such as task complexity and coping capacity on risk. 

2. Definitions 

2.1 Task complexity 

The cornerstone of the i-DREAMS platform is the assessment of task complexity and coping capacity. 

Task complexity relates to the current status of the real-world context in which a vehicle is being 
operated. Since this context is consistent of various individual elements which, together, determine the 

complexity of the task imposed on the vehicle operator, a multi-dimensional approach in further 

operationalizing this concept is adopted. In particular, task complexity context is monitored via 

registration of road layout (i.e., highway, rural, urban), time and location, traffic volumes (i.e. high, 
medium, low) and weather. 

 

2.2 Coping capacity 

As for coping capacity, Figure 1 shows that this concept is dependent upon two underlying factors and 

it consists of several aspects of both vehicle and operator state. These are also multi-dimensional in 
nature.  

 

More specifically, the latent variables associated to “vehicle state” are estimated on the basis of various 

metrics. The factor ‘vehicle’ entails three aspects, as shown below: 

 Technical specifications, measured on the basis of average speed, braking power, acceleration 

performance, etc. 

 Actuators & admitted actions, measured on the basis of accelerator, brakes, steering wheel, etc. 

 Current status, measured on the basis of fuel efficiency, schedule maintenance), real-time 

information either from on board systems (OBD II, FMS, Tachometer), Telematics/GPS, or 

smartphone, or additional information coming from ADAS systems - (headway & collision 

monitoring, pedestrian warning, lane keeping monitoring, on board cameras, etc. 

 

Additionally, the latent variables associated to “operator state” are estimated on the basis of various 
metrics. The factor ‘operator’ entails six aspects, as shown below: 

 Mental state, measured on the basis of metrics on alertness, attention, emotions, etc. 

 Behavior, measured on the basis of metrics such as speeding, harsh acceleration / braking / 

cornering, seat belt use etc. 

 Competencies, measured on the basis of metrics on risk assessment, attention regulation, self-

appraisal, etc. 
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 Personality, measured on the basis of metrics on adventure seeking, disinhibition, experience 

seeking, boredom susceptibility, etc. 

 Sociodemographic profile, measured on the basis of age, gender, experience, socio-economic status, 

nationality, ethnicity, cultural identity, etc. 

 Health status, measured on the basis of metrics on current symptoms, neurologic and cardiovascular 

indicators, medication, etc. 

 
As already outlined, coping capacity is not only dependent upon the status of the operator, but of the 

vehicle as well. Each of these operator- and vehicle-related aspects can be further operationalized by a 

combination of different variables, as shown in Figure 1. 

 

 
Figure 1: Monitoring context, operator & vehicle: an illustrative canvas 

 

3 Literature Review 

Road safety is a critical area of concern worldwide, with road crashes causing significant human 

casualties and economic losses. In recent years, researchers and policymakers have increasingly turned 
to advanced statistical modelling techniques to gain a deeper understanding of the complex factors 

influencing road safety outcomes. One such technique that has gained popularity in this domain is the 

application of Structural Equation Models (SEMs). 
 

SEMs are a powerful statistical tool that allows researchers to examine the relationships between latent 

variables and observed variables, separating measurement errors from true scores of attributes (Yuan & 

Bentler, 2006). Unlike traditional regression models, SEMs not only estimate the direct effects of 
variables but also provide a framework for exploring the indirect effects and mediating relationships 

among variables. By employing SEMs, researchers can assess the complex interplay of various factors 

and their impacts on road safety outcomes, providing valuable insights for the development of effective 
intervention strategies and policy measures. 
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The use of SEMs in road safety research has numerous advantages. Firstly, SEMs can capture the 
multidimensional nature of road safety phenomena by incorporating multiple observed variables and 

latent constructs. This enables researchers to account for the inherent complexity of road safety, which 

involves various factors such as driver behaviour, vehicle characteristics, road conditions, and 
environmental factors. For example, research has shown that factors related to road, driver, and 

environment had a significant influence on crash size (J.-Y. Lee et al., 2008). By considering these 

interrelated factors simultaneously, SEMs offer a holistic perspective on the underlying mechanisms 
driving road safety outcomes. 

 

Secondly, SEMs allow for the examination of causal relationships among variables. This is particularly 

valuable in road safety research, where understanding causal pathways is essential for designing targeted 
interventions. Studies have examined the relationship between risky driving behaviour with gender, 

anxiety, reward sensitivity, and sensation-seeking propensity (Scott-Parker et al., 2013). SEMs facilitate 

the identification of direct and indirect effects, mediating variables, and moderating factors, thereby 
unravelling the intricate relationships that contribute to road safety outcomes. 

 

Furthermore, SEMs provide a means to validate theoretical frameworks and models in the road safety 

domain. By comparing observed data with hypothesized relationships, researchers can assess the 
goodness-of-fit of their models and refine them accordingly. This iterative process of model 

development and refinement enables the creation of robust frameworks that accurately represent the 

underlying dynamics of road safety. For instance, studies have analysed the correlation between crash 
occurrence with risk indicators using SEMs (Shah et al., 2018) 

 

In conclusion, SEMs have emerged as a powerful analytical tool in road safety research. Their ability to 
capture complex relationships, explore causal pathways, and validate theoretical frameworks makes 

them a valuable asset in the pursuit of improved road safety outcomes. By leveraging the insights 

provided by SEMs, researchers and policymakers can work towards the development of effective 

strategies that minimize traffic crashes, reduce injuries, and save lives on our roadways. 

4. Data Collection 

4.1 Experiment description 

As part of the i-DREAMS project, a naturalistic driving experiment was conducted in Greece involving 
65 car drivers and a large database of 9,066 trips and 161,443 minutes was created. Moreover, data from 

an additional telematics experiment which took place for a 3-month timeframe were collected and 

analyzed in order to enhance the power of the analyses presented. The on-road trial experiment was 
carried out in three phases (i.e., phase 1 – monitoring, phase 2 - real-time intervention and post-trip 

feedback and phase 3 - real-time intervention and post-trip feedback and gamification). 

 

In addition, to the vehicle data, questionnaire data were collected both before and after the trial. 
Information collected pre-trial included:  

 Screening questionnaire: driver details (age, gender, driving experience, employment status, etc.), 

vehicle details (model, age, etc.).  

 Entry questionnaire: current use of and opinions on different ADAS, driving style and confidence, 

opinions on driving and safety, self-assessment of driver’s risk-taking behaviors (e.g., speeding, 

mobile phone use), crash and offence history, sleepiness and driving, medical conditions.  

Information collected post-trial included: 
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 User experience questionnaire: opinions on the i-DREAMS system - except for Greece, in which an 

alternative driving experiment without the use of i-DREAMS in-vehicle system was used - (ease of 

use, works as described), opinions on the i-DREAMS smartphone app (ease of use, usefulness).  

 Exit questionnaire: opinions on the i-DREAMS system (improvement of driving, usefulness, trust, 

clarity of warnings, etc.), experience of driving situations, driver behavior (driving and non-driving 

related behaviors), overall experience rating. 

4.2 Variables used 

The primary obstacle of the i-DREAMS project involves establishing the correlation between 

explanatory variables, such as different performance metrics and indicators of task complexity and 

coping capacity, with the dependent variable "risk," to effectively predict STZ. 

 
There are three main components of the nature of variables which are used in i-DREAMS: 

 

 Discrete variables: variables that are categorical (ordinal or nominal) and can only take discrete 

values from the real numbers. A few examples of discrete variables in i-DREAMS could be fatigue 

(yes, no), time of the day (daytime, nighttime driving) and STZ (normal phase, danger phase, 

avoidable accident phase). 

 Continuous variables: variables that can take any values from the real numbers. A few examples of 

continuous variables in i-DREAMS could be speeding, headway and composite variables, such as 

weighted sum or weighted average variables. 

 Latent variables: variables that are not observable to the analyst and so it is not known whether they 

are continuous or discrete. Examples of latent variables in i-DREAMS are task complexity and 

coping capacity which are latent explanatory variables and so observable indicators are needed to 

measure these latent variables. Risk is also initially conceived in i-DREAMS as a latent variable. 

5. Methodology 

5.1 Structural Equation Models (SEMs)  

SEM is widely used for modelling complex and multi-layered relationships between observed and 

unobserved variables, such as ‘task complexity’ etc. Observed variables are measurable, whereas 

unobserved variables are latent constructs – analogous to factors or components in a factor / principal 

component analysis.  

 

Structural equation models have two components: a measurement model and a structural model. The 

measurement model is used to determine how well various observable exogenous variables can measure 
(i.e. load on) the latent variables, as well as the related measurement errors. The structural model is used 

to explore how the model variables are inter-related, allowing for both direct and indirect relationships 

to be modelled. In this sense, SEMs differ from ordinary regression techniques in which relationships 

between variables are direct. 

 

The general formulation of SEM is as follows (Washington et al., 2011, 2020): 
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η = βη + γξ + ε         (1) 

 

where η is a vector of endogenous variables, ξ is a vector of exogenous variables, β and γ are vectors of 

coefficients to be estimated, and ε is a vector of regression errors. 

 

The measurement models are then as follows (Chen, 2007): 

 

x= Λxξ + δ, for the exogenous variables      (2) 

y=Λyη + ζ, for the endogenous variables     (3) 

 

where x and δ are vectors related to the observed exogenous variables and their errors, y and ζ are vectors 

related to the observed endogenous variables and their errors, and Λx, Λy are structural coefficient 

matrices for the effects of the latent exogenous and endogenous variables on the observed variables. 

 

The structural model is often represented by a path analysis, showing how a set of ‘explanatory’ 

variables can influence a ‘dependent’ variable. The paths can be drawn so as to reflect whether the 

explanatory variables are correlated causes, mediated causes, or independent causes to the dependent 

variable. 

 

5.2 Model performance 

In the context of model selection, model Goodness-of-Fit measures consist an important part of any 
statistical model assessment. Several goodness-of-fit metrics are commonly used, including the 

goodness-of-fit index (GFI), the (standardized) Root Mean Square Error Approximation (RMSEA), the 

comparative fit index (CFI) and the Tucker-Lewis Index (TLI). Such criteria are based on differences 
between the observed and modelled variance-covariance matrices. A detailed description of the 

aforementioned metrics is presented below: 

 

The Akaike Information Criterion (AIC), which accounts for the number of included independent 
variables, is used for the process of model selection between models with different combination of 

explanatory variables (Vrieze, 2012). 

 

𝐴𝐼𝐶 =  −2𝐿(𝜃) +  𝑞                   (4) 
 

where: q is the number of parameters and L(θ) is the log-likelihood at convergence. Lower values of 

AIC are preferred to higher values because higher values of -2L(θ) correspond to greater lack of fit. 
 

The Bayesian Information Criterion (BIC) is used for model selection among a finite set of models; 

models with lower BIC are generally preferred. 
 

𝐵𝐼𝐶 =  −2𝐿(𝜃) +  𝑞 ln (𝑁)                 (5) 
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The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) provide measures 
of model performance that account for model complexity. AIC and BIC combine a term reflecting how 

well the model fits the data with a term that penalizes the model in proportion to its number of 

parameters.  
 

The Comparative Fit Index (CFI) is based on a noncentral x2 distribution. It evaluates the model fit 

by comparing the fit of a hypothesized model with that of an independence model. The values of CFI 
range from 0 to 1, indicating a good fit for the model when the value exceeds 0.95 (Lee & Sohn, 2022). 

In general, values more than 0.90 for CFI are generally accepted as indications of very good overall 

model fit (CFI>0.90). The formula is represented as follows: 

 

𝐶𝐹𝐼 = 1 −  
max (𝑥𝐻

2−𝑑𝑓𝐻 ,0)

max (𝑥𝐻
2−𝑑𝑓𝐻 ,𝑥𝐼

2−𝑑𝑓𝐼)
                           (6) 

 

where: x2
H is the value of x2 and dfH is degrees of freedom in the hypothesized model, and x2

I is the 
value of x2 and dfI is the degrees of freedom in the independence model. 

 

The Tucker Lewis Index (TLI) considers the parsimony of the model. Therefore, if the fit indices of 
two models are similar, a simpler model (i.e. greater degrees of freedom) is chosen. TLISI is an 

unstandardized value, so it can have a value less than 0 or greater than 1. It indicates a good fit for the 

model when the value exceeds 0.95 (Lee & Sohn, 2022). In general, values more than 0.90 for TLI are 
generally accepted as indications of very good overall model fit (TLI>0.90). The formula is represented 

as follows: 

 

𝑇𝐿𝐼 =

𝑥𝐼
2

𝑑𝑓𝐼
−

𝑥𝐻
2

𝑑𝑓𝐻
𝑥𝐼

2

𝑑𝑓𝐼
−1

                 (7) 

 

where: x2
H is the value of x2 and dfH is the degrees of freedom in the hypothesized model, and x2

I is the 
value of x2 and dfI is the degrees of freedom in the independence model. 

 

Currently, one of the most widely used goodness-of-fit indices is the Root Mean Square Error 

Approximation (RMSEA). RMSEA measures the unstandardized discrepancy between the population 
and the fitted model, adjusted by its degrees of freedom (df). Different proposals have been made as to 

the correct use of RMSEA. The most common approach is to calculate and interpret the sample’s 

RMSEA (McDonald & Ho, 2002). RMSEA is considered a “badness-of-fit measure,” meaning that 
lower index values represent a better-fitting model. RMSEA index ranges between 0 and 1. Its value 

0.05 or lower is indicative of model fit with observed data. P close value tests the null hypothesis that 

RMSEA is no greater than 0.05. If P close value is more than 0.05, the null hypothesis is accepted that 

RMSEA is no greater than 0.05 and it indicates the model is closely fitting the observed data 
(RMSEA<0.05). The formula is represented as follows: 

 

𝑅𝑀𝑆𝐸𝐴 = √
𝑥𝐻

2− 𝑑𝑓𝐻

𝑑𝑓𝐻(𝑛−1)
                (8) 

 
where: x2

H is the value of x2 and dfH is the degrees of freedom in the hypothesized model; n is the sample 

size. 
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The Root Mean Squared Error (RMSE) is one of the most commonly used measures for evaluating 
the quality of predictions. It shows how far predictions fall from measured true values using Euclidean 

distance. 

 
The formula of RMSE, which is the square root of the average squared error, is represented as follows: 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑒𝑡

2                (9) 

 

where: N is the number of forecasted points, and 𝑒𝑡 is the error (i.e. 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑡 − 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑𝑡)  

 
The Goodness of Fit Index (GFI) is a measure of fit between the hypothesized model and the observed 

covariance matrix. The adjusted goodness of fit index (AGFI) corrects the GFI, which is affected by the 

number of indicators of each latent variable (Baumgartner & Homburg, 1996). The GFI and AGFI range 

between 0 and 1, with a value of over 0.9 generally indicating acceptable model fit. In general, values 
more than 0.90 for GFI are generally accepted as indications of very good overall model fit (GFI>0.90). 

 

Lastly, the Hoelter index is calculated to find if chi-square is insignificant or not. If its value is more 
than 200 for the model, then model is considered to be good fit with observed data (Hoelter>200). Values 

of less than 75 indicate very poor model fit. The Hoelter only makes sense to interpret if N > 200 and 

the chi square is statistically significant. 

 

6. Results 

Three separate SEM models were estimated in order to explore the relationship between the latent 
variables of task complexity, coping capacity and risk (expressed as the three phases of the STZ) of 

speeding. Each model corresponds with one of the phases of the i-DREAMS experiment namely:  

 Phase 1: monitoring - 65 Greek car drivers, 2,937 trips (51,786 minutes) 

 Phase 2: real-time & post-trip interventions - 65 Greek car drivers, 3,935 trips (69,962 minutes) 

 Phase 3: real-time. post-trip interventions & gamification - 65 Greek car drivers, 2,194 trips (39,695 

minutes) 

 

6.1 Task complexity analysis 

The results concerning the impact of task complexity on risk, for phase 1, are shown in Figure 2 below. 

Risk is measured by means of the STZ levels for speeding (level 1 refers to ‘normal driving’ used as the 

reference case, level 2 refers to ‘dangerous driving’ while level 3 refers to ‘avoidable accident driving’), 

with positive correlations of Risk with the STZ indicators.  

 

To begin with, the latent variable task complexity is measured by means of the environmental indicators 

“Time indicator” (indicating time of the day). The exposure indicator of trip duration was also included 

in the task complexity analysis. 
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Overall, the structural model between task complexity and risk shows a positive but negligible 

coefficient, which means that increased task complexity relates to increased risk according to the model 

(regression coefficient=0.05).  

 

 

Figure 2: Results of SEM of task complexity on risk (speeding STZ) – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal to 0.967; TLI is 0.939 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.091. Table 1 summarizes the model fit of SEM applied for 
speeding. 

 

Table 1: Model Fit Summary for speeding – experiment Phase 1 

Model Fit Summary 

AIC 314702.148 

BIC 314854.909 

CFI 0.967 

TLI 0.939 

RMSEA 0.091 

GFI 0.975 

Hoelter's critical N (α = .05) 232.504 

Hoelter's critical N (α = .01) 300.920 

 

 

Residual variances details are presented in Table 2 that follows. 

Table 2: Residual variances for speeding – experiment Phase 1 
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Variable Estimate Std. Error z-value p 

Duration 0.783 0.054 14.508 < .001 

Distance 0.885 0.029 30.050 < .001 

Time indicator 0.996 0.009 105.704 < .001 

Speeding level 0 -33.128 43.663 -0.759 0.448 

Speeding level 1 0.975 0.033 29.423 < .001 

Speeding level 2 0.967 0.010 94.075 < .001 

 

 

The following Figures show the results of the 2nd and 3rd phase of the experiment. It is observed that the 

measurement equations of task complexity and coping capacity are fairly consistent between the 

different phases. At the same time, the loadings of the observed proportions of the STZ of speeding are 

consistent between the different phases. The structural model between task complexity and inverse risk 

(normal driving) are positively correlated among the three phases. The results for phase 2 are shown in 

Figure 3 below. 

 

 

Figure 3: Results of SEM of task complexity on risk (speeding STZ) – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal to 0.960; TLI is 0.925 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.088. Table 3 summarizes the model fit of SEM applied for 

speeding. 
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Table 3: Model Fit Summary for speeding – experiment Phase 2 

Model Fit Summary 

AIC 1.052×10+6 

BIC 1.052×10+6  

CFI 0.960 

TLI 0.925 

RMSEA 0.088 

GFI 0.975 

Hoelter's critical N (α = .05) 248.125 

Hoelter's critical N (α = .01) 321.159  

 

 

Residual variances details are presented in Table 4 that follows. 

 

Table 4: Residual variances for speeding – experiment Phase 2 

Variable Estimate Std. Error z-value p 

Distance 0.928 0.006 157.921 < .001 

Duration 0.877 0.007 120.516 < .001 

Time indicator 0.999 0.005 193.616 < .001 

Speeding level 0 10.802 2.145 5.035 < .001 

Speeding level 1 1.078 0.018 59.878 < .001 

Speeding level 2 0.960 0.006 161.128 < .001 

 

 

The results for phase 3 are shown Figure 4 below. 
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Figure 4: Results of SEM of task complexity on risk (speeding STZ) – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal to 0.918, TLI is 0.847 and the Root-Mean-

Square-Error Approximation (RMSEA) is 0.134. Table 5 summarizes the model fit of SEM applied for 

speeding. 

 

Table 5: Model Fit Summary for speeding – experiment Phase 3 

Model Fit Summary 

AIC 2.028×10+6 

BIC 2.028×10+6 

CFI 0.918 

TLI 0.847 

RMSEA 0.134 

GFI 0.943 

Hoelter's critical N (α = .05) 108.695 

Hoelter's critical N (α = .01) 140.523 

 

Residual variances details are presented in Table 6 that follows. 
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Table 6: Residual variances for speeding – experiment Phase 3 

Variable Estimate Std. Error z-value p 

Distance 0.971 0.004 263.800 < .001 

Duration -0.759 0.059 -12.949 < .001 

Time indicator 0.927 0.004 227.104 < .001 

Speeding level 0 -2.551 0.096 -26.536 < .001 

Speeding level 1 0.783 0.007 117.887 < .001 

Speeding level 2 0.927 0.004 219.034 < .001 

 

6.2 Coping capacity (vehicle and operator state) analysis 

The results of the effect of coping capacity on risk for phase 1 are shown in Figure 5 below. Risk is 

measured by means of the STZ levels for speeding (level 1 refers to ‘normal driving’ used as the 

reference case, level 2 refers to ‘dangerous driving’ while level 3 refers to ‘avoidable accident driving’), 
with positive correlations of Risk with the STZ indicators.  

 

First of all, the latent coping capacity is measured by means of operator state indicators, such as duration, 

distance, harsh acceleration, harsh braking, age and gender. At the same time, the indicators of coping 
capacity - vehicle state, such as Vehicle age, gearbox or fuel type are included in the SEM applied.  

 

Overall, the structural model between coping capacity and risk shows a negative coefficient, which 
means that increased coping capacity relates to decreased risk according to the model (regression 

coefficient=-0.26). 

 

 
Figure 5: Results of SEM of coping capacity on risk (speeding STZ) – experiment Phase 1 
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The Comparative Fit Index (CFI) of the model is equal 0.850; TLI is 0.813 and the Root-Mean-Square-
Error Approximation (RMSEA) is 0.092. Table 7 summarizes the model fit of SEM applied for 

speeding. 
 

Table 7: Model Fit Summary for speeding – experiment Phase 1 

Model Fit Summary 

AIC 627917.827 

BIC 628215.310 

CFI 0.850 

TLI 0.813 

RMSEA 0.092 

GFI 0.925 

Hoelter's critical N (α = .05) 156.811 

Hoelter's critical N (α = .01) 176.234 

 

 

Residual variances details are presented in Table 8 that follows. 

 

Table 8: Residual variances for speeding – experiment Phase 1 

Variable Estimate Std. Error z-value p 

Duration 0.959 0.009 105.572 < .001 

Distance 0.998 0.010 104.690 < .001 

Harsh acceleration 1.000 0.013 76.548 < .001 

Age 0.855 0.008 100.639 < .001 

Gender 0.317 0.010 31.772 < .001 

Fuel type 0.674 0.008 84.382 < .001 

Vehicle age 0.862 0.009 101.024 < .001 

Gearbox 0.843 0.008 99.927 < .001 

Harsh breaking 1.000 0.013 76.555 < .001 

Speeding level 0 -14.334 8.264 -1.735 0.083 

Speeding level 1 0.945 0.031 30.328 < .001 

Speeding level 2 0.966 0.010 94.063 < .001 

 
The following Figures show the results of the 2nd and 3rd phase of the experiment. It is observed that the 

measurement equations of coping capacity are fairly consistent between the different phases. At the 

same time, the loadings of the observed proportions of the STZ of speeding are consistent between the 
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different phases. The structural model between while coping capacity and inverse risk (normal driving) 
are negatively correlated among the three phases. The results for phase 2 are shown in Figure 6 below. 

 

 
Figure 6: Results of SEM of coping capacity on risk (speeding STZ) – experiment Phase 2 

 
The Comparative Fit Index (CFI) of the model is equal 0.815; TLI is 0.769 and the Root-Mean-Square-

Error Approximation (RMSEA) is 0.098. Table 9 summarizes the model fit of SEM applied for 
speeding. 

 

Table 9: Model Fit Summary for speeding – experiment Phase 2 

Model Fit Summary 

AIC 2.057×10+6  

BIC 2.058×10+6  

CFI 0.815 

TLI 0.769 

RMSEA 0.098 

GFI 0.903 

Hoelter's critical N (α = .05) 141.664 

Hoelter's critical N (α = .01) 159.199 

 

Residual variances details are presented in Table 10 that follows. 
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Table 10: Residual variances for speeding – experiment Phase 2 

Variable Estimate Std. Error z-value p 

Age 0.632 0.004 151.404 < .001 

Distance 0.997 0.005 191.286 < .001 

Duration 0.966 0.005 192.843 < .001 

Gender 0.532 0.004 128.544 < .001 

Fuel type 0.994 0.005 194.944 < .001 

Vehicle age 0.687 0.004 161.350 < .001 

Gearbox 0.572 0.004 138.444 < .001 

Harsh breaking 0.999 0.008 129.154 < .001 

Harsh acceleration 0.995 0.008 129.345 < .001 

Speeding level 0 9.928 1.890 5.253 < .001 

Speeding level 1 1.085 0.019 57.401 < .001 

Speeding level 2 0.960 0.006 160.597 < .001 

 
The results for phase 3 are shown in Figure 7 below. 

 

 
Figure 7: Results of SEM of coping capacity on risk (speeding STZ) – experiment Phase 3 

The Comparative Fit Index (CFI) of the model is equal 0.816, TLI is 0.774 and the Root-Mean-Square-

Error Approximation (RMSEA) is 0.115. Table 11 summarizes the model fit of SEM applied for 
speeding.  
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Table 11: Model Fit Summary for speeding – experiment Phase 3 

Model Fit Summary 

AIC 3.902×10+6  

BIC 3.903×10+6  

CFI 0.816 

TLI 0.771 

RMSEA 0.115 

GFI 0.869 

Hoelter's critical N (α = .05) 102.409 

Hoelter's critical N (α = .01) 115.051 

 

 
Residual variances details are presented in Table 12 that follows. 

 
Table 12: Residual variances for speeding – experiment Phase 3 

Variable Estimate Std. Error z-value p 

Duration 0.579 0.002 247.029 < .001 

Distance 0.921 0.003 266.306 < .001 

Harsh acceleration 0.995 0.006 168.010 < .001 

Age 0.886 0.003 274.877 < .001 

Gender 0.740 0.003 264.872 < .001 

Fuel type 0.806 0.003 269.842 < .001 

Vehicle age 0.355 0.002 188.034 < .001 

Gearbox 0.247 0.002 136.651 < .001 

Harsh breaking 1.000 0.006 167.717 < .001 

Speeding level 0 -2.915 0.126 -23.181 < .001 

Speeding level 1 0.805 0.007 114.329 < .001 

Speeding level 2 0.925 0.004 217.575 < .001 

 

6.3 Synthesis of risk factors 

The results of the influence of the risk indicators (i.e., task complexity and coping capacity) for phase 1 
are shown in Figure 8 below. Risk is measured by means of the STZ levels for speeding (level 1 refers 

to ‘normal driving’ used as the reference case, level 2 refers to ‘dangerous driving’ while level 3 refers 

to ‘avoidable accident driving’), with positive correlations of Risk with the STZ indicators.  
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To begin with, the latent variable task complexity is measured by means of the environmental indicators 
“Time indicator” (indicating time of the day). The exposure indicator of trip duration was also included 

in the task complexity analysis. In particular, time of the day and duration had a positive correlation 

with task complexity. Moreover, the latent coping capacity is measured by means of operator state 
indicators, such as distance, harsh acceleration, harsh braking, age and gender. At the same time, the 

indicators of coping capacity - vehicle state, such as Vehicle age, gearbox or fuel type are included in 

the SEM applied.  
 

The structural model between the latent variables shows some interesting findings. First of all, task 

complexity and coping capacity are inter-related with a positive correlation (regression 

coefficient=0.56). This positive correlation indicates that higher task complexity is associated with 
higher coping capacity implying that drivers coping capacity increases as the complexity of driving task 

increases. 

 
Overall, the structural model between task complexity and risk shows a positive coefficient, which 

means that increased task complexity relates to increased risk according to the model (regression 

coefficient=0.69). On the other hand, the structural model between coping capacity and risk shows a 

negative coefficient, which means that increased coping capacity relates to decreased risk according to 
the model (regression coefficient=-0.35). 

 

 
Figure 8: Results of SEM on risk (speeding STZ) – Greek car drivers – experiment Phase 1 

 

The Comparative Fit Index (CFI) of the model is equal 0.840; TLI is 0.798 and the Root-Mean-Square-

Error Approximation (RMSEA) is 0.089. Table 13 summarizes the model fit of SEM applied for 

speeding. 
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Table 13: Model Fit Summary for speeding – Greek car drivers – experiment Phase 1 

Model Fit Summary 

AIC 692252.677 

BIC 692590.360 

CFI 0.840 

TLI 0.798 

RMSEA 0.089 

GFI 0.925 

Hoelter's critical N (α = .05) 164.309 

Hoelter's critical N (α = .01) 183.214 

 

Residual variances details are presented in Table 14 that follows. 

 

Table 14: Residual variances for speeding – Greek car drivers – experiment Phase 1 

Variable Estimate Std. Error z-value p 

Duration -13.639 52.128 -0.262 0.794 

Distance 0.998 0.011 89.383 < .001 

Time indicator 1.000 0.009 106.909 < .001 

Harsh acceleration 1.000 0.013 76.550 < .001 

Age 0.862 0.009 101.232 < .001 

Gender 0.299 0.010 29.136 < .001 

Fuel type 0.674 0.008 84.400 < .001 

Vehicle age 0.864 0.009 101.297 < .001 

Gearbox 0.849 0.008 100.479 < .001 

Harsh breaking 1.000 0.013 76.556 < .001 

Speeding level 0 -9.548 3.697 -2.583 0.010 

Speeding level 1 0.920 0.030 31.114 < .001 

Speeding level 2 0.964 0.010 94.063 < .001 

 

The following Figures show the results of the 2nd and 3rd phase of the experiment. It is observed that 

the measurement equations of task complexity and coping capacity are fairly consistent between the 

different phases. At the same time, the loadings of the observed proportions of the STZ of speeding are 
consistent between the different phases. The structural model between task complexity and inverse risk 

(normal driving) are positively correlated among the three phases, while coping capacity and risk found 

to have a negative relationship in all phases of the experiment. The results for phase 2 are shown in 
Figure 9 below. 
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Figure 9: Results of SEM on risk (speeding STZ) – Greek car drivers – experiment Phase 2 

 

The Comparative Fit Index (CFI) of the model is equal 0.811; TLI is 0.762 and the Root-Mean-Square-

Error Approximation (RMSEA) is 0.092. Table 15 summarizes the model fit of SEM applied for 

speeding. 
 

 

 

Table 15: Model Fit Summary for speeding – Greek car drivers – experiment Phase 2 

Model Fit Summary 

AIC 2.268×10+6  

BIC 2.268×10+6  

CFI 0.811 

TLI 0.762 

RMSEA 0.092 

GFI 0.908 

Hoelter's critical N (α = .05) 154.927 

Hoelter's critical N (α = .01) 172.746 

 

Residual variances details are presented in Table 16 that follows. 
 

  



 
 

- 22 - 

Table 16: Residual variances for speeding – Greek car drivers – experiment Phase 2 

Variable Estimate Std. Error z-value p 

Time indicator 0.951 0.005 176.006 < .001 

Duration 0.667 0.016 42.411 < .001 

Distance 0.997 0.005 191.252 < .001 

Age 0.629 0.004 151.007 < .001 

Gender 0.540 0.004 130.780 < .001 

Fuel type 0.995 0.005 194.984 < .001 

Vehicle age 0.685 0.004 161.191 < .001 

Gearbox 0.569 0.004 137.849 < .001 

Harsh breaking 0.999 0.008 129.155 < .001 

Harsh acceleration 0.995 0.008 129.341 < .001 

Speeding level 0 21.018 8.341 2.520 0.012 

Speeding level 1 1.038 0.017 61.946 < .001 

Speeding level 2 0.957 0.006 160.887 < .001 

 
The results for phase 3 are shown Figure 10 below. 

  
Figure 10: Results of SEM on risk (speeding STZ) – Greek car drivers – experiment Phase 3 

 

The Comparative Fit Index (CFI) of the model is equal 0.809, TLI is 0.759 and the Root-Mean-Square-
Error Approximation (RMSEA) is 0.111. Table 17 summarizes the model fit of SEM applied for 

speeding. 
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Table 17: Model Fit Summary for speeding – Greek car drivers – experiment Phase 3 

Model Fit Summary 

AIC 4.326×10+6  

BIC 4.326×10+6  

CFI 0.809 

TLI 0.759 

RMSEA 0.111 

GFI 0.872 

Hoelter's critical N (α = .05) 107.037 

Hoelter's critical N (α = .01) 119.311 

 
Residual variances details are presented in Table 18 that follows. 
 

Table 18: Residual variances for speeding – Greek car drivers – experiment Phase 3 

Variable Estimate Std. Error z-value p 

Distance 0.952 0.004 268.224 < .001 

Duration 0.058 0.007 8.939 < .001 

Time indicator 0.863 0.003 267.069 < .001 

Harsh acceleration 0.995 0.006 168.036 < .001 

Age 0.881 0.003 274.527 < .001 

Gender 0.731 0.003 263.853 < .001 

Fuel type 0.811 0.003 270.086 < .001 

Vehicle age 0.363 0.002 188.467 < .001 

Gearbox 0.240 0.002 129.755 < .001 

Harsh breaking 1.000 0.006 167.717 < .001 

Speeding level 0 -2.192 0.073 -30.049 < .001 

Speeding level 1 0.758 0.006 120.858 < .001 

Speeding level 2 0.925 0.004 219.243 < .001 

 

7. Conclusions 

The current research aims to examine the impact of task complexity and coping capacity on risk. To 
fulfil this objective, a naturalistic driving experiment was carried out and data from on road trials in 

Greece was collected representing car drivers, included four consecutive phases: 

 

 Phase 1: baseline measurement 
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 Phase 2: real-time intervention 

 Phase 3: real-time intervention and post-trip feedback 

 Phase 4: real-time intervention and post-trip feedback and gamification 

 

An integrated model per each phase was applied in order to gain an in-depth understanding of inter-
relationship with risk. Questionnaire data were also collected providing useful information about the 

participants. 

 
Results indicated that in phase 1, task complexity and coping capacity were inter-related with a positive 

correlation, which implies that drivers’ coping capacity increases as the complexity of driving task 

increases. On the other hand, in phase 3, task complexity and coping capacity were negatively correlated. 

The effect of task complexity was generally greater than the one of coping capacity, whereas the peak 
of the contributions from task complexity and coping capacity was observed in phase 3.  

 

The measurement of task complexity and its correlation with risk posed a challenge due to the limited 
number of variables that could be collected and utilized, leading to the use of proxies. For instance, the 

weather conditions, lighting conditions or night-time driving were not available and thus; these variables 

were not included in the analysis. 
 

Overall, collection of the intended variables proved more difficult than anticipated. Future research 

could take into consideration the aforementioned challenges, and through adequate planning, 

accommodate the extensive requirements of such an endeavour. Incorporating information on factors 
like road configuration, traffic density, and other relevant metrics would be very useful in order to 

establish the complexity of the driving task and its association with risk. 
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