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Abstract 
 

Considering the significant influence of the human factor on safe driving behavior, the i-DREAMS project 

developed a ‘Safety Tolerance Zone (STZ)’ to define the precise boundary where self-regulated control can be 

maintained safely. Taking to account the framework of the i-DREAMS project, this paper endeavors to model the 
inter-relationship among task complexity, coping capacity (i.e. vehicle and operator state) and crash risk. A 

complete Structural Equation Model (SEM) was developed for each country of analysis (i.e., Belgium, United 

Kingdom, Germany) to describe the interactions between task complexity and coping capacity (i.e., related to both 

vehicle state and operator state factors). Results showed positive correlation of task complexity and coping 

capacity that implies that driver’s coping capacity increased as the complexity of driving task increases. 
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Περίληψη 
 

Λαμβάνοντας υπόψη τη σημαντική επιρροή του ανθρώπινου παράγοντα στην ασφαλή οδηγική συμπεριφορά, το 

έργο i-DREAMS ανέπτυξε μια "Ζώνη Ανοχής Ασφάλειας (STZ)" για να καθορίσει το ακριβές όριο όπου ο 

αυτορρυθμιζόμενος έλεγχος μπορεί να διατηρηθεί με ασφάλεια. Λαμβάνοντας υπόψη το πλαίσιο του έργου i-

DREAMS, η παρούσα έρευνα αποσκοπεί στην μοντελοποίηση της αλληλεπίδρασης μεταξύ της δυσκολίας του 
έργου της οδήγησης, της ικανότητας αντιμετώπισης (δηλ. της κατάστασης του οχήματος και του χειριστή) και του 

κινδύνου σύγκρουσης. Για κάθε χώρα ανάλυσης (δηλ. Βέλγιο, Ηνωμένο Βασίλειο, Γερμανία, Ελλάδα) 

αναπτύχθηκε ένα πλήρες Μοντέλο Δομικών Εξισώσεων (SEM) για την περιγραφή των αλληλεπιδράσεων μεταξύ 

της δυσκολίας του έργου της οδήγησης και της ικανότητας αντιμετώπισης (δηλ. που σχετίζονται τόσο με την 

κατάσταση του οχήματος όσο και με τους παράγοντες της κατάστασης του χειριστή). Τα αποτελέσματα έδειξαν 

θετική συσχέτιση της πολυπλοκότητας του έργου της οδήγησης και της ικανότητας αντιμετώπισης του κινδύνου 

που σημαίνει ότι η ικανότητα αντιμετώπισης του οδηγού αυξάνεται όσο αυξάνεται η δυσκολία στο έργο της 

οδήγησης. 
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1. Introduction 

Road safety is of utmost importance in order to reduce crash risk, prevent injuries, and save lives. Every 

year, numerous lives are lost and countless individuals sustain severe injuries as a result of road crashes. 
Several factors have a significant impact on road safety. These factors can contribute to the occurrence 
of road crashes and influence the severity of injuries sustained. For instance, human behavior plays a 

critical role in road safety. Factors such as speeding, distracted driving (e.g., mobile phone use), 

impaired driving (due to alcohol, drugs, or fatigue), aggressive driving, and non-compliance with traffic 
regulations can increase the crash risk. In addition, the design, condition, and maintenance of roads and 

infrastructure can impact road safety. Poorly designed roads, inadequate signage, absence of pedestrian 

crossings, lack of proper lighting, and insufficient maintenance can contribute to crashes and injuries. 
 

At the same time, the condition and safety features of vehicles also have a strong impact on road safety. 

Indicators such as vehicle maintenance, tire condition, brake functionality, and the presence of safety 

technologies (e.g., airbags, anti-lock braking systems) can significantly affect crash outcomes. 
Similarly, environmental conditions can affect road safety. Factors such as adverse weather conditions 

(e.g., rain, snow, fog), poor visibility, and uneven road surfaces can increase the likelihood of crashes. 

Moreover, socioeconomic factors, such as income level, education, and access to transportation 
resources, can indirectly influence road safety. Disparities in these factors may contribute to differences 

in driver behaviors, vehicle conditions, and road infrastructure quality. 

 

Based on the above, the overall objective of the i-DREAMS project is to setup a framework for the 
definition, development, testing and validation of a context-aware safety envelope for driving (‘Safety 

Tolerance Zone’), within a smart Driver, Vehicle & Environment Assessment and Monitoring System 

(i-DREAMS). Taking into account driver background factors and real-time risk indicators associated 
with the driving performance as well as the driver state and driving task complexity indicators, a 

continuous real-time assessment will be made to monitor and determine if a driver is within acceptable 

boundaries of safe operation (i.e. Safety Tolerance Zone). Moreover, the to-be-developed i-DREAMS 
platform will offer a series of in-vehicle interventions, meant to prevent drivers from getting too close 

to the boundaries of unsafe operation and to bring them back into the Safety Tolerance Zone (STZ) 

while driving. The safety-oriented interventions will be developed to inform or warn the driver real-time 

in an effective way as well as on an aggregated level after driving through an app- and web-based 
gamified coaching platform, thus reinforcing the learning of safer driving habits/behaviors. 

Consequently, the i-DREAMS platform will allow the implementation of the two aforementioned safety 

interventions, meant to motivate and enable human operators to develop the appropriate safety-oriented 
attitude. 

 

In-vehicle interventions are intended to aid and support vehicle operators in real-time (i.e., while 
driving). Depending on how urgent the collision hazards are, a ‘normal driving' phase, a 'danger' phase, 

and a 'avoidable accident' phase can be distinguished. During the ‘normal’ phase, the monitoring 

platform of the i-DREAMS detects no irregularities in a vehicle operator’s driving style and thus no 

immediate intervention is necessary. The i-DREAMS monitoring module detects abnormalities from 
the vehicles operator’s driving style during the ‘danger’ phase, and the potential of a crash is present. In 

that instance a warning signal will be provided in order to guide the driver within acceptable safety 

boundaries of operation. Finally, concerning the ‘avoidable accident’ phase the likelihood of a collision 
occurring becomes imminent if the vehicle operator fails to adjust to the current conditions promptly 
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and appropriately. To aid the vehicle operators in preventing a crash, a more prominent warning signal 
is introduced. 

 

Post-trip interventions are not operational while driving, but they are dependent on what happens 
throughout the journey. They are based on all of the raw data collected by the i-DREAMS sensors, 

which is then processed and fused to provide information on a vehicle operator's driving style, how it 

evolved during a trip, how many (safety-critical) incidents occurred, and under what conditions these 
incidents occurred. This data may then be turned into feedback for vehicle operators via an app in a pre- 

or post-trip context. To develop a longer-term connection with individual vehicle operators, app-

supported feedback can be supplemented with the usage of a web-based coaching platform that includes 

gamification aspects to motivate drivers to concentrate on gradual and consistent progress. 
 

According to the level of unsafe driving behavior, the STZ is categorized into three levels: ‘Normal’, 

‘Dangerous’ and ‘Avoidable Accident’. First off, the ‘Normal’ level denotes a situation with a minimal 
crash risk and thus safe driving practices. Second, the 'Dangerous' level refers to the chance of a crash 

increasing, but the crash is not unavoidable. Finally, the ‘Avoidable Accident’ level denotes a high risk 

of a potential crash occurring, but there is still enough time for drivers to act and avoid the incident. 

 
Following the i-DREAMS project’s goal, this study aims to investigate the interaction between task 

complexity and coping capacity (i.e., related to both vehicle state and operator state factors). To achieve 

this goal a complete Structural Equation Model (SEM) developed and a set of quantitative effects of 
indicators was created, describing the impacts of vehicle, operator and context characteristics on risk 

under different conditions. Apart from SEMs, Generalized Linear Models (GLMs) were also used and 

the goodness-of-fit-metrics for the models were explained. 
 

The paper is structured as follows.  At the beginning, a detailed overview of the project and its overall 

objective is provided. Following that, a comprehensive literature review on the statistical analysis of 

driving behavior is presented. Furthermore, the data collection process is thoroughly described. The 
research approach is then outlined, including the theoretical foundations of the models used. Finally, the 

results are provided, followed by substantial conclusions about the relationship between crucial factors 

such as task complexity and coping capacity on risk. 

2. Background  

The inter-relationship between driving task complexity, coping capacity, and crash risk is a multifaceted 

and crucial area of study in traffic safety research. The assessment of task difficulty and coping ability 

forms the basis of the i-DREAMS platform. 

 

2.1 Definitions 

Task complexity plays a significant role in influencing crash risk on the roads. The complexity of driving 

tasks refers to the level of cognitive demand and physical effort required to perform them. Factors 
contributing to task complexity include traffic density, road infrastructure, weather conditions, presence 

of distractions, and time pressure, among others. The current state of the real-world environment in 

which a vehicle is being driven is related to task complexity. Since the difficulty of the job placed on 
the vehicle operator depends on a number of distinct individual factors, a multi-dimensional approach 

is taken to further operationalize this idea. The registration of road layout (i.e., highway, rural, urban), 

time and place, traffic volumes (i.e., high, medium, low), and weather is particularly used to assess job 

complexity context. 
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On the other hand, coping capacity refers to an individual driver's ability to effectively manage and 

adapt to complex driving tasks. It encompasses factors such as experience, skills, perceptual abilities, 

decision-making processes, and the availability of appropriate coping strategies. Drivers with high 
coping capacity can better handle complex tasks, maintain situational awareness, and make appropriate 

decisions to mitigate crash risk. More precisely, estimates of the latent variables related to "vehicle state" 

are made using a variety of criteria. The word "vehicle" refers to three different things, as follows:  
 

 Technical specifications, measured based on average speed, braking power, acceleration 

performance, etc. 

 Actuators & admitted actions, as determined by the steering wheel, accelerator, brakes etc. 

 Current status, measured on the basis of fuel efficiency, schedule maintenance), real-time 

information either from on board systems (OBD II, FMS, Tachometer), Telematics/GPS, or 

smartphone, or additional information coming from Advanced Driver Assistance Systems (ADAS) 

systems - (headway & collision monitoring, pedestrian warning, lane keeping monitoring, on board 

cameras, etc. 

 
The latent variables related to "operator state" are also estimated using a variety of measures. The factor 

"operator" has six components, as follows: 

 

 Mental state, measured based on metrics on alertness, attention, emotions, etc. 

 Behavior, measured on the basis of metrics such as speeding, harsh acceleration / braking / 

cornering, seat belt use etc. 

 Competencies, measured based on metrics on risk assessment, attention regulation, self-appraisal, 

etc. 

 Personality, measured based on metrics on adventure seeking, disinhibition, experience seeking, 

boredom susceptibility, etc. 

 Sociodemographic profile, measured based on age, gender, experience, socio-economic status, 

nationality, ethnicity, cultural identity, etc. 

 Health status, measured based on metrics on current symptoms, neurologic and cardiovascular 

indicators, medication, etc. 

 
The conceptual foundation of the i-DREAMS platform for the prediction of risk as a function of coping 

capacity and task complexity is shown in Figure 1. 
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Figure 1: Post-hoc prediction of risk in function of coping capacity and task complexity 

 

2.2 Road safety aspects 

Road safety is a pressing global concern, with millions of lives lost or impacted by traffic crashes each 
year. To effectively address this issue, researchers and policymakers have turned to advanced statistical 

modeling techniques, such as Structural Equation Models (SEMs), to gain a deeper understanding of the 

complex relationships between various factors contributing to road crashes. 
 

SEMs have emerged as a powerful tool for analyzing the intricate interplay between observed variables 

and latent constructs in road safety research. They allow researchers to explore the direct and indirect 

effects of multiple factors on road safety while providing a methodology for direct modelling of latent 
variable, separating measurement errors from true scores of attributes (Yuan & Bentler, 2006). This 

makes SEMs particularly suitable for studying the multifaceted nature of road safety, where numerous 

factors interact to influence the occurrence and severity of crashes. 
 

The application of SEMs in recent road safety research has yielded valuable insights into the underlying 

factors contributing to crashes and their consequences. By modeling and examining the relationships 
between various risk factors, SEMs help researchers identify key predictors of road crashes, understand 

their interrelationships, and develop effective intervention strategies (Shah et al., 2018).  

 

One area where SEMs have been applied in road safety is the modeling of driver behavior and its impact 
on crash occurrence. By incorporating multiple variables, such as driver characteristics, environmental 

factors, and vehicle conditions, SEMs provide insights into their combined influence on driving 

behavior and crash severity (J.-Y. Lee et al., 2008; Scott-Parker et al., 2013; Zhao et al., 2019). These 
models allow researchers to uncover the underlying mechanisms through which these factors interact 

and contribute to road safety. 
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In conclusion, the use of SEMs has proven invaluable in advancing road safety research. These models 
provide a comprehensive framework for understanding the intricate relationships and interdependencies 

among various factors contributing to road crashes. By elucidating causal mechanisms and 

mediating/moderating effects, SEMs enable researchers to develop targeted interventions, evaluate 
policy effectiveness, and ultimately enhance road safety outcomes. 

3. Data Description 

3.1 Experimental processing 

Four separate SEM models were estimated in order to explore the relationship between the latent 
variables of task complexity, coping capacity and risk (expressed as the three stages of the STZ) of all 

event variables, such as speeding, headway, overtaking and fatigue (level 1 ‘normal driving’ used as the 

reference case). Data from Belgian, German and UK car drivers were analyzed. Each model corresponds 

with one of the phases of the i-DREAMS experiment namely:  

 Phase 1: monitoring - 120 car drivers, 5,643 trips (104,195 minutes) 

 Phase 2: real-time interventions - 125 car drivers, 6,188 trips (109,341 minutes) 

 Phase 3: real-time & post-trip interventions - 130 car drivers, 6,519 trips (117,381 minutes) 

 Phase 4: real-time, post-trip interventions & gamification - 130 car drivers, 8,558 trips (169,695 

minutes) 

The on-road trials in i-DREAMS were designed based on several proven principles derived from 

previous literature focusing on testing interventions in order to assist drivers in maintaining the STZ. As 

the first stage of the field trials, pilot testing was performed for a limited number of vehicles (i.e., five 
vehicles) for each test site. The purpose of the pilot tests was to fine-tune the i-DREAMS technology. 

This includes all the processes associated with production, installation and interventions but also 

collection, processing and visualization of data. In addition, it offered the chance to implement changes 

based on user feedback before transitioning to large-scale testing. 

 

The on-road trials focused on monitoring driving behavior and the impact of real-time interventions 

(i.e., in-vehicle warnings) and post-trip interventions (i.e., post-trip-feedback & gamification) on driving 
behavior. Figure 2 provides an overview of the different phases of the experimental design of the i-

DREAMS on-road study. 
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Figure 2: Overview of the different phases of the experimental design of the i-DREAMS on-road study 

 

3.2 Variables used to define task complexity and coping capacity 

The most appropriate variables which were used in order to define task complexity and coping capacity 

(vehicle and operator state) along with the variables that were finally utilized to represent risk are shown 

in Table 1.  
 

With regards to car wipers, considered as an indicator of weather conditions, can be used to clear rain, 

snow, or debris from the windshield of a vehicle, which are all common weather-related hazards. The 
speed at which the wipers move can also indicate the intensity of the precipitation or debris. For instance, 

if the wipers are moving very fast, it may indicate heavy rain or snow. On the other hand, if the wipers 

are moving slowly, it could mean that there is only light precipitation. Overall, car wipers are an 

important safety feature of a vehicle and can help drivers navigate through different weather conditions. 
 

In addition, high beam headlights are considered an indicator of lighting conditions as they are used to 

provide maximum illumination when driving in low light or dark conditions. The high beam headlights 
are designed to project a beam of light further down the road, which can help drivers to see obstacles or 

pedestrians that may be difficult to see with low beam headlights. Overall, high beam headlights are an 

important feature of a vehicle that can help drivers navigate through different lighting conditions. 
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Table 1: Variables for task complexity and coping capacity (vehicle and operator state) and risk 

Task complexity Coping capacity – 

Vehicle State 

Coping capacity – operator state Risk 

Car wipers Vehicle age Distance Inter Beat Interval 

Headway map 

levels 

Car high beam 

First vehicle 

registration  Duration Headway 

Speeding map 

levels 

Time indicator  Fuel type Average speed Overtaking 

Overtaking map 

levels 

Distance 

Engine Cubic 

Centimeters 

Harsh 

acceleration/brakin

g Fatigue Fatigue map levels 

Duration 

Engine Horsepower 

(HP) 

Forward collision 

warning (FCW) Gender Harsh acceleration 

Month Gearbox 

Pedestrian collision 

warning (PCW) Age Harsh braking 

Day of the week 
Vehicle brand 

Lane departure 

warning (LDW) Educational level 

Vehicle control 

events 

4. Methodological Overview 

4.1 Generalized Linear Models (GLMs) 

In statistics, the Generalized Linear Model (GLM) is a flexible generalization of ordinary linear 

regression that allows for response variables that have error distribution models other than a normal 

distribution. The GLM generalizes linear regression by allowing the linear model to be related to the 
response variable via a link function and by allowing the magnitude of the variance of each measurement 

to be a function of its predicted value (T. J. Hastie & Pregibon, 2017). 

 
In a generalized linear model (GLM), each outcome Y of the dependent variables is assumed to be 

generated from a particular distribution in an exponential family, a large class of probability distributions 

that includes the normal, binomial, Poisson and gamma distributions, among others. The mean, μ, 
of the distribution depends on the independent variables, X, through: 

 

𝐸(𝑌|X) = 𝜇 =  𝑔−1(𝑋𝛽)      (1) 

 
where: E(Y|X) is the expected value of Y conditional on X; Xβ is the linear predictor, a linear 

combination of unknown parameters β; g is the link function. 

 
In this framework, the variance is typically a function, V, of the mean: 

 

𝑉𝑎𝑟(𝑌|X) = 𝑉(𝑔−1(𝑋𝛽))      (2) 
 

It is convenient if V follows from an exponential family of distributions, but it may simply be that the 

variance is a function of the predicted value. 
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The unknown parameters, β, are typically estimated with maximum likelihood, maximum quasi-

likelihood, or Bayesian techniques.  

 
GLMs were formulated as a way of unifying various other statistical models, including linear 

regression, logistic regression, and Poisson regression. In particular, T. Hastie & Tibshirani (1990) 

proposed an iteratively reweighted least squares method for maximum likelihood estimation of the 
model parameters. Maximum-likelihood estimation remains popular and is the default method on many 

statistical computing packages. Other approaches, including Bayesian approaches and least squares fits 

to variance stabilized responses, have been developed.  
 

A key point in the development of GLM was the generalization of the normal distribution (on which 

the linear regression model relies) to the exponential family of distributions. This idea was developed 
by Collins et al. (2001). Consider a single random variable y whose probability (mass) function (if it is 

discrete) or probability density function (if it is continuous) depends on a single parameter θ. The 

distribution belongs to the exponential family if it can be written as follows: 

 

𝑓(𝑦; 𝜃) = 𝑠(𝑦)𝑡(𝜃)𝑒𝑎(𝑦)𝑏(𝜃)      (3) 

 
where: a, b, s, and t are known functions. The symmetry between y and θ becomes more evident if the 

equation above is rewritten as follows: 

 

𝑓(𝑦; 𝜃) = exp [𝛼(𝑦)𝑏(𝜃) + 𝑐(𝜃) +  𝑑(𝑦)]    (4) 
 

where: s(y)=exp[d(y)] and t(θ)=exp[c(θ)] 

 
If a(y) =y then the distribution is said to be in the canonical form. Furthermore, any additional parameters 

(besides the parameter of interest θ) are regarded as nuisance parameters forming parts of the functions 

a, b, c, and d, and they are treated as though they were known. Many well-known distributions belong 
to the exponential family, including Poisson, normal or binomial distributions. On the other hand, 

examples of well-known and widely used distributions that cannot be expressed in this form are the 

student’s t-distribution and the uniform distribution. 

 
It should be mentioned that the Variance Inflation Factor (VIF) is a measure of the amount of 

multicollinearity in regression analysis. Multicollinearity exists when there is a correlation between 

multiple independent variables in a multiple regression model. The default VIF cutoff value is 5; only 
variables with a VIF less than 5 will be included in the model (VIF<5). However, in certain cases, even 

if VIF is less than 10, then it can be accepted. 

 

4.2 Structural Equation Models (SEM) 

Structural Equation Modelling or path analysis is a multivariate method used to test hypotheses 

regarding the influences among interacting observed and unobserved variables (Harrison et al., 2007). 

The observed variables are measurable, while unobserved variables are latent constructs. 

Structural equation models consist of two components: a measurement model and a structural model. 

The measurement model is used to assess how well various observable exogenous variables can measure 

the latent variables, as well as the measurement errors associated with them. The structural model is 
used to investigate the relationships among the model variables, enabling the modeling of both direct 
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and indirect linkages. In this regard, SEMs distinguish themselves from regular regression techniques 

by deviating from direct relationships between variables. 

 

The general formulation of SEM is as follows (Washington et al., 2011, 2020): 

 

η = βη + γξ + ε         (5) 

 

In equation (3), η represents a vector of endogenous variables, ξ represents a vector of exogenous 

variables, β and γ are vectors of coefficients to be estimated, and ε represents a vector of regression 

errors. 

 

The measurement models can be described as follows (Chen, 2007): 

 

x= Λxξ + δ, for the exogenous variables      (6) 

y=Λyη + ζ, for the endogenous variables     (7) 

 

In equations (4) and (5), x and δ represent vectors associated with the observed exogenous variables and 

their errors, while y and ζ are vectors represent vectors associated with the observed endogenous 
variables and their errors. Λx, Λy are structural coefficient matrices that capture the effects of the latent 

exogenous and endogenous variables on the observed variables. 

 

To depict the structural model, path analysis is often employed, illustrating how a set of "explanatory" 

variables can influence a "dependent" variable. The paths can be visually represented to indicate whether 

the explanatory variables are correlated causes, mediated causes, or independent causes of the dependent 

variable. 

 

4.3 Model goodness-of-fit measures 

In the context of model selection, model Goodness-of-Fit measures consist an important part of any 

statistical model assessment. Several goodness-of-fit metrics are commonly used, including the 

goodness-of-fit index (GFI), the (standardized) Root Mean Square Error Approximation (RMSEA), the 
comparative fit index (CFI) and the Tucker-Lewis Index (TLI). Such criteria are based on differences 

between the observed and modelled variance-covariance matrices. A detailed description of the 

aforementioned metrics is presented below: 

 
The Akaike Information Criterion (AIC), which accounts for the number of included independent 

variables, is used for the process of model selection between models with different combination of 

explanatory variables (Vrieze, 2012). 
 

𝐴𝐼𝐶 =  −2𝐿(𝜃) +  𝑞                  (8) 
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where: q is the number of parameters and L(θ) is the log-likelihood at convergence. Lower values of 
AIC are preferred to higher values because higher values of -2L(θ) correspond to greater lack of fit. 

 

The Bayesian Information Criterion (BIC) is used for model selection among a finite set of models; 
models with lower BIC are generally preferred. 

 

𝐵𝐼𝐶 =  −2𝐿(𝜃) +  𝑞 ln (𝑁)       (9) 
 

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) provide measures 

of model performance that account for model complexity. AIC and BIC combine a term reflecting how 

well the model fits the data with a term that penalizes the model in proportion to its number of 
parameters.  

 

The Comparative Fit Index (CFI) is based on a noncentral x2 distribution. It evaluates the model fit 
by comparing the fit of a hypothesized model with that of an independence model. The values of CFI 

range from 0 to 1, indicating a good fit for the model when the value exceeds 0.95 (Lee & Sohn, 2022). 

In general, values more than 0.90 for CFI are generally accepted as indications of very good overall 

model fit (CFI>0.90). The formula is represented as follows: 
 

𝐶𝐹𝐼 = 1 −  
max (𝑥𝐻

2−𝑑𝑓𝐻 ,0)

max (𝑥𝐻
2−𝑑𝑓𝐻 ,𝑥𝐼

2−𝑑𝑓𝐼)
               (10) 

 

where: x2
H is the value of x2 and dfH is degrees of freedom in the hypothesized model, and x2

I is the 

value of x2 and dfI is the degrees of freedom in the independence model. 

 
The Tucker Lewis Index (TLI) considers the parsimony of the model. Therefore, if the fit indices of 

two models are similar, a simpler model (i.e. greater degrees of freedom) is chosen. TLISI is an 

unstandardized value, so it can have a value less than 0 or greater than 1. It indicates a good fit for the 
model when the value exceeds 0.95 (Lee & Sohn, 2022). In general, values more than 0.90 for TLI are 

generally accepted as indications of very good overall model fit (TLI>0.90). The formula is represented 

as follows: 

 

𝑇𝐿𝐼 =

𝑥𝐼
2

𝑑𝑓𝐼
−

𝑥𝐻
2

𝑑𝑓𝐻
𝑥𝐼

2

𝑑𝑓𝐼
−1

                 (11) 

 
where: x2

H is the value of x2 and dfH is the degrees of freedom in the hypothesized model, and x2
I is the 

value of x2 and dfI is the degrees of freedom in the independence model. 

 

Currently, one of the most widely used goodness-of-fit indices is the Root Mean Square Error 

Approximation (RMSEA). RMSEA measures the unstandardized discrepancy between the population 

and the fitted model, adjusted by its degrees of freedom (df). Different proposals have been made as to 

the correct use of RMSEA. The most common approach is to calculate and interpret the sample’s 
RMSEA (McDonald & Ho, 2002). RMSEA is considered a “badness-of-fit measure,” meaning that 

lower index values represent a better-fitting model. RMSEA index ranges between 0 and 1. Its value 

0.05 or lower is indicative of model fit with observed data. P close value tests the null hypothesis that 
RMSEA is no greater than 0.05. If P close value is more than 0.05, the null hypothesis is accepted that 

RMSEA is no greater than 0.05 and it indicates the model is closely fitting the observed data 

(RMSEA<0.05). The formula is represented as follows: 
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𝑅𝑀𝑆𝐸𝐴 = √
𝑥𝐻

2− 𝑑𝑓𝐻

𝑑𝑓𝐻(𝑛−1)
                 (12) 

 

where: x2
H is the value of x2 and dfH is the degrees of freedom in the hypothesized model; n is the sample 

size. 

 
The Root Mean Squared Error (RMSE) is one of the most commonly used measures for evaluating 

the quality of predictions. It shows how far predictions fall from measured true values using Euclidean 

distance. 

 

The formula of RMSE, which is the square root of the average squared error, is represented as follows: 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑒𝑡

2              (13) 

 

where: N is the number of forecasted points, and 𝑒𝑡 is the error (i.e. 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑡 − 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑𝑡)  
 

The Goodness of Fit Index (GFI) is a measure of fit between the hypothesized model and the observed 

covariance matrix. The adjusted goodness of fit index (AGFI) corrects the GFI, which is affected by the 

number of indicators of each latent variable (Baumgartner & Homburg, 1996). The GFI and AGFI range 
between 0 and 1, with a value of over 0.9 generally indicating acceptable model fit. In general, values 

more than 0.90 for GFI are generally accepted as indications of very good overall model fit (GFI>0.90). 

 
Lastly, the Hoelter index is calculated to find if chi-square is insignificant or not. If its value is more 

than 200 for the model, then model is considered to be good fit with observed data (Hoelter>200). Values 

of less than 75 indicate very poor model fit. The Hoelter only makes sense to interpret if N > 200 and 
the chi square is statistically significant. 

5. Results 

5.1 GLM results 

GLMs were employed to investigate the relationship of key performance indicator of speeding for 
Belgian, UK and German car drivers. The relationship between speeding and risk is widely recognized 

in the road safety community and as such, speeding is a commonly used dependent variable in 

transportation human factors research.  

 
The first Generalized Linear Regression model investigated the relationship between the speeding and 

several explanatory variables of task complexity and coping capacity (operator state) in Belgium. In 

particular, the dependent variable of the developed model is the dummy variable “speeding”, which is 
coded with 1 if there is a speeding event and with 0 if not. For task complexity, the variables used are 

time indicator, wipers and high beam, while for coping capacity - operator state, the variables used are 

distance traveled and harsh acceleration. It should be mentioned that the explanatory variables of vehicle 
state, such as fuel type, vehicle age or gearbox, or socio-demographic characteristics, such as gender, 

age or educational level are not statistically significant at a 95% confidence level; thus, these variables 

are not included in the models. The model parameter estimates are summarized in Table 2. 
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Table 2: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard 

Error 

z-value Pr(|z|) VIF 

(Intercept) 3.668 0.043 85.768 < .001 - 

Time indicator 0.908 0.078 11.683 < .001 1.882 

Weather 0.009 4.217×10-4  20.952 < .001 1.228 

High beam - Off -0.018 7.062×10-4  -25.286 < .001 1.470 

Harsh acceleration 2.661 0.181 14.689 < .001 1.013 

Distance -6.128×10-4  7.273×10-5  -8.426 < .001 1.678 

Summary statistics      

AIC 17404.428     

BIC 17413.817     

Degrees of freedom 88377     

 
Based on Table 2, it can be observed that all explanatory variables are statistically significant at a 95% 

confidence level; there is no issue of multicollinearity as the VIF values are much lower than 5. With 

regard to the coefficients, it was revealed that the indicators of task complexity, such as time indicator 
and wipers were positively correlated with speeding. The former refers to the time of the day (day coded 

as 1, dusk coded as 2, night coded as 3) which means that higher speeding events occur at night 

compared to during the day. This may be due to fewer cars on the road, lower visibility, and a false 
sense of security that comes with driving in the dark. Interestingly, wipers (wipers off coded as 0, wipers 

on coded as 1) were also found to have a positive correlation with speeding which means that there are 

more speeding events during adverse (e.g. rainy) weather conditions. This may be due to the fact that 

wet and slippery roads can make it more difficult to maintain control of the vehicle. Additionally, rain 
can reduce visibility and make it harder to see other cars or obstacles on the road. Taking into account 

the indicator of high beam (indicating lighting conditions; no high beam detected), a negative correlation 

was identified which means that when high beam was off - and, therefore, it was daytime - there were 
less speeding events. This finding comes in agreement with the previous argument with the indicator of 

time of the day that higher speeding events occur at night compared to the rest of the day. 

 

Regarding the indicators of coping capacity - operator state, harsh accelerations had a positive 
relationship with the dependent variable (i.e. speeding), indicating that as the number of harsh 

acceleration increases, speeding also increases. This is a noteworthy finding of the current research as 

it confirms that harsh driving behavior events present a statistically significant positive correlation with 
speeding. Lastly, total distance travelled was negatively correlated with speeding which may be due to 

the fact that the longer a person drives, the more fatigued they may become, causing them to drive slower 

and more cautiously. 
 

The second Generalized Linear Regression model investigated the relationship between the speeding 

and several explanatory variables of task complexity and coping capacity (vehicle and operator state) in 

UK. More specifically, for task complexity, the variables used are wipers on and high beam, while for 
coping capacity - operator state, the variables used are distance traveled, duration, harsh acceleration 

events, gender, forward collision warning and right lane departure warning. It should be noted that for 

vehicle state, variables such as fuel type, vehicle age and gearbox were not statistically significant; and 



 
 

- 14 - 

thus, these independent variables were not included in the analysis. The model parameter estimates are 
summarized in Table 3. 
 

Table 3: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard 

Error 

z-value Pr(|z|) VIF 

(Intercept) -3.824 0.014 -274.620 < .001 - 

Duration 4.672×10-5  7.877×10-7  59.317 < .001 1.058 

Harsh acceleration -0.187 0.012 -15.377 < .001 1.014 

Weather -0.273 0.023 -11.713 < .001 1.008 

High beam 0.128 0.078 1.635 0.102 1.002 

Forward collision warning 10.603 2.479 4.276 < .001 1.001 

Right lane departure warning 0.357 0.014 25.348 < .001 1.026 

Distance 0.002 1.876×10-5  117.628 < .001 1.072 

Gender - Male 0.373 0.012 31.757 < .001 1.056 

Summary statistics      

AIC 263599.548     

BIC 263610.743     

Degrees of freedom 537681     

 
Based on Table 3, it can be observed that all explanatory variables are statistically significant at a 95% 

confidence level and there is no issue of multicollinearity as the VIF values are much lower than 5. With 
regard to the coefficients, it was revealed that the indicators of coping capacity are all positively 

correlated with speeding except for harsh acceleration events that appear to be fewer when speeding 

occurs. The opposite happens with FCW and LDW events that appear to be higher in case of speeding. 
An increase in the trip duration and the distance travelled is associated with an increase in speeding 

events, as well. The use of wipers though is, as expected, negatively associated with speeding events. 

Gender was a significant variable in this model showing that male drivers (males coded as 0, females as 

1), are possibly prone to speeding while the use of high beams also was connected with higher speeding 
events possibly due to lighter night hours traffic. 

 

The third Generalized Linear Regression model investigated the relationship between the speeding and 
several explanatory variables of task complexity and coping capacity (vehicle and operator state) in 

Germany. For task complexity, the variables used are time indicator and high beam, for coping capacity 

- vehicle state, the variables used are type of fuel and vehicle age, while for coping capacity - operator 
state, the variables used are distance traveled, duration, harsh acceleration, drowsiness, gender and age. 

The model parameter estimates are summarized in Table 4. 
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Table 4: Parameter estimates and multicollinearity diagnostics of the GLM for speeding 

Variables Estimate Standard 

Error 

z-value Pr(|z|) VIF 

(Intercept) 1.105 0.057 19.549 < .001 - 

Duration 0.003 3.414×10-5  73.366 < .001 1.262 

Distance 5.735×10-4  3.723×10-5  15.404 < .001 1.029 

Harsh acceleration 1.282×10-4  1.974×10-6  64.951 < .001 1.222 

Fuel type - Petrol 0.219 0.010 21.446 < .001 1.328 

Vehicle Age 3.162×10-5  3.340×10-6  9.469 < .001 1.277 

Gender - Female -0.275 0.021 -13.025 < .001 1.256 

Age -0.003 0.001 -2.289 0.022 1.076 

Drowsiness 1.009×10-5  2.656×10-6  3.800 < .001 1.113 

Time indicator 8.547×10-5  1.925×10-6  44.405 < .001 1.080 

High beam - On 0.817 0.059 13.963 < .001 1.073 

Summary statistics      

AIC 127971.813     

BIC 127981.881     

Degrees of freedom 174299     

 
Based on Table 4, it can be observed that all explanatory variables are statistically significant at a 95% 
confidence level; there is no issue of multicollinearity as the VIF values are much lower than 5. With 

regard to the coefficients, it was revealed that the indicators of task complexity, such as time and high 

beam (indicating lighting conditions; no high beam detected) were positively correlated with speeding. 

Regarding the indicators of coping capacity – vehicle state such as fuel type and vehicle age were 
positively correlated with speeding. Furthermore, it was demonstrated that indicators of coping capacity 

– operator state, such as harsh accelerations, distance, duration and drowsiness had a positive 

relationship with the dependent variable (i.e. speeding), indicating that as the values of the 
aforementioned independent variables increases, speeding also increases. This is a noteworthy finding 

of the current research as it confirms that harsh driving behavior events present a statistically significant 

positive correlation with speeding. 

 
Taking into consideration socio-demographic characteristics, gender and age were negatively correlated 

with speeding. In particular, the negative value of the “Gender” coefficient implied that as the va lue of 

the variable was equal to 1 (males coded as 0, females as 1), the speeding percentage was lower. Results 
revealed that the vast majority of male drivers displayed less cautious behavior during their trips and 

exceeded more often the speed limits than female drivers. It is also remarkable that the negative value 

of the “Age” coefficient implied that as the value of the variable increased (higher value indicates 
increased age and, therefore, increased years of participant’s experience), the speeding percentage was 

lower. Young drivers appeared to have a riskier driving behavior than older drivers and were more prone 

to exceed the speed limits. 
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5.2 SEM results 

SEM results for phase 1 are shown in Figure 3 below. Risk is measured by means of the STZ levels for 

speeding, headway, overtaking and fatigue (level 1 ‘normal driving’ used as the reference case; level 2 
refers to ‘dangerous driving’, while no incidents with regards to level 3 ‘avoidable accident driving’ 

were found).  

 

To begin with, the latent variable task complexity is measured by means of the environmental indicator 
of time of the day, lighting conditions and weather. Furthermore, it is shown that the latent coping 

capacity is measured by means of both vehicle state indicators, such as “Vehicle age” (indicating the 

age of the vehicle), “Gearbox” (indicating the type of gearbox; automatic or manual) and “Fuel type” 
(indicating the type of fuel; diesel, hybrid electric, petrol). At the same time, operator state indicators, 

such as “Gender” (indicating the gender of the driver; male or female), “Age” (indicating the age of the 

driver), distance travelled, harsh acceleration and harsh braking are included in the SEM applied.  
 

The structural model between the latent variables shows some interesting findings: first, task complexity 

and coping capacity are inter-related with a positive correlation (regression coefficient=0.02) – which 

increases in magnitude as the driver’s progress from phases 1 though phases 2 and 3. This positive 
correlation indicates that higher task complexity is associated with higher coping capacity implying that 

drivers coping capacity increases as the complexity of driving task increases. Overall, the structural 

model between task complexity and risk shows a positive coefficient, which means that increased task 
complexity relates to increased risk according to the model (regression coefficient=2.17). On the other 

hand, the structural model between coping capacity and risk shows a negative coefficient, which means 

that increased coping capacity relates to decreased risk according to the model (regression coefficient=-

0.55). 

 

 
 

Figure 3: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 1 
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The Comparative Fit Index (CFI) of the model is equal 0.650; TLI is 0.570 and the Root-Mean-Square-
Error Approximation (RMSEA) is 0.091. Table 5 summarizes the model fit of SEM applied for 

speeding. 

 

Table 5: Model Fit Summary for speeding-Belgian, German and UK car drivers – experiment Phase 1 

Model Fit measures Value 

AIC 817833.112 

BIC 818194.915 

CFI 0.650 

TLI 0.570 

RMSEA 0.091 

GFI 0.918 

Hoelter's critical N (α = .05) 155.529 

Hoelter's critical N (α = .01) 171.977 

 
Residual variances details are presented in Table 6 that follows. 
 

Table 6: Residual variances for speeding-Belgian, German and UK car drivers – experiment Phase 1 

Variable Estimate Std. Error z-value P(>|z|) 

Time indicator 0.862 0.009 100.596 < .001 

High beam 0.812 0.008 97.405 < .001 

Wipers 0.998 0.010 104.686 < .001 

Age 0.379 0.009 41.795 < .001 

Fuel type 1.000 0.013 76.545 < .001 

Vehicle age 1.000 0.013 76.555 < .001 

Gearbox 2.402 0.131 18.391 < .001 

Distance 1.220 0.023 52.503 < .001 

Gender 1.032 0.010 101.735 < .001 

Harsh acceleration event high 0.862 0.009 100.596 < .001 

STZ1 0.812 0.008 97.405 < .001 

STZ2 0.998 0.010 104.686 < .001 

STZ3 0.379 0.009 41.795 < .001 

 

The following Figures show the results of the 2nd, 3rd and 4th phase of the experiment. It is observed 
that the measurement equations of task complexity and coping capacity are fairly consistent between 

the different phases. At the same time, the loadings of the observed proportions of the STZ of speeding 

are consistent between the different phases. The structural model between task complexity and inverse 
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risk (normal driving) are positively correlated among the four phases, while coping capacity and risk 
found to have a negative relationship in all phases of the experiment. The results for phase 2 are shown 

in Figure 4 below. 

 

 
 

Figure 4: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 2 

 
The Comparative Fit Index (CFI) of the model is equal 0.688; TLI is 0.617 and the Root-Mean-Square-

Error Approximation (RMSEA) is 0.074. Table 7 summarizes the model fit of SEM applied for 
speeding. 

 

Table 7: Model Fit Summary for speeding-Belgian, German and UK car drivers – experiment Phase 2 

Model Fit measures Value 

AIC 2.512×10+6  

BIC 2.512×10+6  

CFI 0.688 

TLI 0.617 

RMSEA 0.074 

GFI 0.938 

Hoelter's critical N (α = .05) 236.232 

Hoelter's critical N (α = .01) 261.271 

 
Residual variances details are presented in Table 8 that follows. 
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Table 8: Residual variances for speeding-Belgian, German and UK car drivers – experiment Phase 2 

Variable Estimate Std. Error z-value P(>|z|) 

Time indicator 0.713 0.022 31.963 < .001 

High beam 0.970 0.006 171.072 < .001 

Wipers 0.999 0.005 187.505 < .001 

Age 0.879 0.005 180.312 < .001 

Fuel type 0.867 0.005 178.940 < .001 

Vehicle age 0.884 0.005 180.930 < .001 

Gearbox 0.873 0.005 179.664 < .001 

Distance 0.973 0.005 183.467 < .001 

Gender 0.120 0.009 13.409 < .001 

Harsh acceleration event high 1.000 0.008 123.875 < .001 

Harsh breaking event high 1.000 0.008 123.385 < .001 

STZ1 -0.361 0.077 -4.690 < .001 

STZ2 0.783 0.013 60.557 < .001 

STZ3 0.991 0.005 187.483 < .001 

 
 

The results for phase 3 are shown in Figure 5 below. 

 
 

Figure 5: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 3 
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The Comparative Fit Index (CFI) of the model is equal 0.637; TLI is 0.562 and the Root-Mean-Square-
Error Approximation (RMSEA) is 0.087. Table 9 summarizes the model fit of SEM applied for 

speeding. 

 

Table 9: Model Fit Summary for speeding-Belgian, German and UK car drivers – experiment Phase 3 

Model Fit measures Value 

AIC 2.901×10+6  

BIC 2.901×10+6  

CFI 0.637 

TLI 0.562 

RMSEA 0.087 

GFI 0.908 

Hoelter's critical N (α = .05) 166.828 

Hoelter's critical N (α = .01) 183.169 

 
Residual variances details are presented in Table 10 that follows. 

 

Table 10: Residual variances for speeding-Belgian, German and UK car drivers – experiment Phase 3 

Variable Estimate Std. Error z-value P(>|z|) 

Duration 0.644 0.015 44.245 < .001 

Time indicator 0.951 0.005 179.290 < .001 

Wipers 0.998 0.005 193.632 < .001 

High beam 0.999 0.005 193.861 < .001 

Age 0.639 0.004 153.179 < .001 

Fuel type 0.997 0.005 195.131 < .001 

Vehicle age 0.674 0.004 159.380 < .001 

Gearbox 0.557 0.004 135.209 < .001 

Distance 0.996 0.005 191.177 < .001 

Gender 0.554 0.004 134.476 < .001 

Harsh acceleration event high 0.995 0.008 129.345 < .001 

Harsh breaking event high 0.999 0.008 129.153 < .001 

STZ1 1.629 0.029 56.712 < .001 

STZ2 1.386 0.018 75.676 < .001 

STZ3 1.026 0.005 188.174 < .001 
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The results for phase 4 are shown in Figure 6 below. 

 

 
 

Figure 6: Results of SEM on Risk (Speeding STZ) – Belgian, German and UK car drivers – experiment Phase 4 

 
The Comparative Fit Index (CFI) of the model is equal 0.754; TLI is 0.703 and the Root-Mean-Square-

Error Approximation (RMSEA) is 0.093. Table 11 summarizes the model fit of SEM applied for 
speeding. 

 

Table 11: Model Fit Summary for speeding-Belgian, German and UK car drivers–experiment Phase 4 

Model Fit measures Value 

AIC 5.729×10+6  

BIC 5.729×10+6  

CFI 0.754 

TLI 0.703 

RMSEA 0.093 

GFI 0.899 

Hoelter's critical N (α = .05) 147.761 

Hoelter's critical N (α = .01) 162.223 

 
Residual variances details are presented in Table 12 that follows. 
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Table 12: Residual variances for speeding-Belgian, German and UK car drivers – experiment Phase 4 

Variable Estimate Std. Error z-value P(>|z|) 

Wipers 0.987 0.004 279.552 < .001 

High beam 0.966 0.003 278.492 < .001 

Duration 0.112 0.006 18.858 < .001 

Time indicator 0.855 0.003 265.935 < .001 

Age 0.888 0.003 275.077 < .001 

Fuel type 0.806 0.003 270.034 < .001 

Vehicle age 0.355 0.002 189.990 < .001 

Gearbox 0.245 0.002 137.894 < .001 

Distance 0.917 0.003 266.204 < .001 

Gender 0.742 0.003 265.255 < .001 

Harsh acceleration event high 0.995 0.006 168.002 < .001 

Harsh breaking event high 1.000 0.006 167.719 < .001 

STZ1 -7.362 0.990 -7.435 < .001 

STZ2 0.974 0.005 211.023 < .001 

STZ3 0.999 0.004 280.639 < .001 

 

6. Discussion 

As task complexity increased, drivers may experience greater cognitive load and divided attention, 
potentially leading to decreased situational awareness and slower response times. These factors can 

impair decision-making abilities and increase the likelihood of errors or collisions. 

 
Higher task complexity was associated with an increased crash risk due to several reasons. Firstly, 

drivers could probably become overwhelmed by the demands of complex tasks, leading to reduced 

attention to the road and other traffic participants. This can result in delayed detection of critical events 

and inadequate responses. Secondly, complex tasks may require drivers to allocate more mental 
resources, causing them to divert attention from essential driving activities. For instance, interacting 

with in-vehicle technology or navigation systems can increase cognitive workload and lead to decreased 

focus on the primary task of driving. 
 

Conversely, drivers with limited coping capacity may struggle to effectively manage complex tasks, 

leading to higher crash risk. Reduced coping capacity can manifest as slower reaction times, impaired 

judgment, and difficulties in prioritizing information. In situations where the demands of the driving 
task exceed a driver's coping capacity, there is an increased likelihood of errors, misjudgments, and 

collisions. 

 
According to the overall model applied for cars, the latent variable risk was measured by means of the 

STZ levels for speeding, headway, overtaking and fatigue. The positive correlation of task complexity 
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and coping capacity implied that drivers’ coping capacity increased as the complexity of driving task 
increases. This finding may be a sign of risk compensating behavior of drivers when the complexity of 

driving task is high, and is in line with the theoretical model of i-DREAMS, validating the assumption 

that risk (or its’ inverse, the normal driving) is an outcome of the interaction between the two variables 
in addition to their separate effect. A positive correlation of risk with the STZ indicators was identified 

in phase 1, while a negative correlation was found in phase 4 which showed that the latent variable risk 

could in fact be representing an inverse of risk, more like a normal driving. 
 

It is worth noting that the relationship between task complexity and risk, as well as coping capacity and 

risk, may depend on the specific context and the type of task or activity involved. In general, higher task 

complexity may increase the potential for errors or crashes, as it can lead to greater cognitive or physical 
demands on the individual performing the task. However, it is also possible that increased experience 

or training can help to mitigate the risk associated with higher task complexity. Similarly, a higher 

coping capacity may help to reduce the risk of crashes or errors, as it can provide individuals with the 
resources or strategies needed to effectively manage challenging or stressful situations. However, the 

effectiveness of coping strategies may depend on the specific context and the individual's ability to apply 

them in real-world situations. Overall, it is important to consider the specific factors and context 

involved when assessing the relationship between task complexity, coping capacity, and risk. 
 

The developed models presented in this work can be further exploited by researchers and practitioners. 

Additional task complexity and coping capacity factors, such as road type, more personality traits and 
driving profiles could be utilized for example. Furthermore, data could be enhanced by including 

additional measurements such as electrocardiogram and electroengephalogram readings, traffic conflicts 

and transport emissions. Finally, additional methodologies such as imbalanced learning and models 
taking into account unobserved heterogeneity could be explored for the understanding of the relationship 

between task complexity, coping capacity and crash risk. 

7. Conclusions 

The objective of the present research was to model the inter-relationship between driving task 

complexity, coping capacity and crash risk using the i-DREAMS database. For that purpose, data 
collected from a naturalistic driving experiment with a sample of 130 drivers were utilized and data 

from Belgian, German and UK car drivers were collected and analyzed. Explanatory variables of risk 

and the most reliable indicators, such as time headway, distance travelled, speed, forward collision, time 
of the day (lighting indicators) or weather conditions were assessed.  

 

Results showed that higher task complexity levels lead to higher coping capacity. This means that 

drivers, when faced with difficult conditions, tend to regulate well their capacity to apprehend potential 
difficulties, while driving. It was revealed that the SEM applied between task complexity and inverse 

risk were positively correlated in all phases of the experiment, which means that increased task 

complexity relates to increased risk. On the other hand, coping capacity and inverse risk found to have 
a negative relationship in all phases, which means that increased coping capacity relates to decreased 

risk. Overall, the interventions had a positive influence on risk, increasing the coping capacity of the 

operators and reducing the risk of dangerous driving behavior. 
 

All in all, the inter-relationship between driving task complexity, coping capacity, and crash risk is a 

multifaceted and crucial area of study in traffic safety research. Driving task complexity refers to the 

level of demand and cognitive load imposed on the driver by various factors such as traffic density, road 
conditions, weather, and the presence of distractions. Coping capacity, on the other hand, encompasses 

the individual driver's ability to effectively manage and adapt to these complex driving tasks. It includes 
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factors like driver experience, skills, perceptual abilities, decision-making processes, and the availability 
of appropriate coping strategies. The interplay between driving task complexity and coping capacity 

directly impacts crash risk, as drivers who are overwhelmed by high task complexity and have limited 

coping capacity may experience reduced situational awareness, slower reaction times, impaired 
decision-making, and increased likelihood of errors or collisions. Conversely, drivers with better coping 

capacity can effectively handle complex driving tasks, mitigate risks, and maintain safer driving 

behaviors.  
 

It is also crucial to address the factors that contribute to road crashes, such as speeding, distracted 

driving, impaired driving, and failure to follow traffic rules. By promoting responsible driving behavior 

and creating awareness about the potential consequences of these actions, we can significantly reduce 
the occurrence of crashes. Additionally, providing proper education and training to drivers, especially 

young and inexperienced ones, can instill good driving habits and improve overall road safety. 

Implementing effective road safety measures requires a collaborative effort from governments, law 
enforcement agencies, transportation authorities, and the community as a whole. Together, we can create 

a safer road environment that prioritizes the well-being and lives of all road users. 

 

Understanding and modeling this inter-relationship between task complexity, coping capacity and crash 
risk is vital for developing targeted interventions and countermeasures to enhance traffic safety and 

reduce crash risk on our roadways. This includes improving road infrastructure, implementing 

appropriate signage and road markings, educating drivers about the impact of task complexity on their 
performance, and promoting the development of coping strategies to manage complex driving situations. 

Lastly, technological advancements in vehicle automation and driver assistance systems can play a role 

in mitigating crash risk by reducing the cognitive load associated with complex tasks and providing 
support to drivers in challenging driving conditions. 
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