





11<sup>th</sup> INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Modelling the inter-relationship among task complexity, coping capacity and crash risk

#### **Eva Michelaraki**

Transportation Engineer, PhD Candidate

Together with:

T. Garefalakis, S. Roussou, C. Katrakazas, A. P. Afghari, E. Papazikou, R. Talbot, C. A. Haddad, R. Alam, M. Adnan, W. Khattak, E. Papadimitriou, C. Antoniou, T. Brijs, G. Yannis











# The i-DREAMS project

- > 13 Project partners:
  - <u>National Technical University of Athens</u>

<u>Universiteit Hasselt</u>, <u>Loughborough University</u>, <u>Technische</u> <u>Universität München</u>, <u>Kuratorium für Verkehrssicherheit</u>, <u>Delft University of Technology</u>, <u>University of Maribor</u>, <u>OSeven</u> <u>Telematics</u>, <u>DriveSimSolutions</u>, <u>CardioID Technologies</u>, <u>European Transport Safety Council</u>, <u>POLIS Network</u>, <u>Barraqueiro Transportes S.A.</u>

- > Duration of the project:
  - 48 months (May 2019 April 2023)
- **Framework Program**:
  - <u>Horizon 2020</u> The EU Union Framework Programme for Research and Innovation - Mobility for Growth

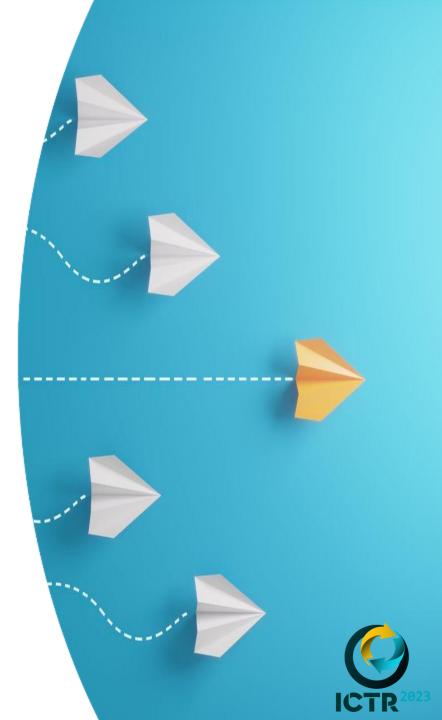




### Introduction

Human behaviour plays a critical role in road safety

- Factors such as speeding, distraction, aggressive or impaired driving and non-compliance with traffic regulations can increase the crash risk
- Poorly designed roads, inadequate signage, absence of pedestrian crossings, lack of proper lighting and insufficient maintenance have a direct impact on road safety
- Environmental conditions and safety features of vehicles can also contribute to crashes and injuries






# **Objectives**

- Identification of the most critical indicators of risk from both the task complexity and the coping capacity (vehicle and operator state) side
- Examination of the impact of vehicle, operator and context characteristics on risk under several conditions and phases
- Development of an integrated model for understanding the effect of driver-vehicleenvironment interaction with risk
- Comparison of the performance of such model on different countries





### **Data Description**

- Task complexity relates to the current status of the real world context in which a vehicle is being operated:
  - road layout (i.e. highway, rural, urban)
  - time and location
  - traffic volumes (i.e. high, medium, low)
  - weather conditions
- Coping capacity is dependent upon two underlying factors and it consists of several aspects:
  - vehicle state (e.g. technical specifications, actuators & admitted actions, current status)
  - operator state (e.g. mental state, behaviour, competencies, personality, sociodemographic profile)

| Task complexity        | Coping capacity<br>– vehicle state | Coping c<br>operat                       | Risk                   |                           |  |
|------------------------|------------------------------------|------------------------------------------|------------------------|---------------------------|--|
| Car wipers Vehicle age |                                    | Distance                                 | Inter Beat<br>Interval | Headway map<br>levels     |  |
| Car high beam          | First vehicle registration         | Duration                                 | Headway                | Speeding map<br>levels    |  |
| Time indicator         | Fuel type                          | Average speed                            | Overtaking             | Overtaking<br>map levels  |  |
| Distance               | Engine Cubic<br>Centimeters        | Harsh<br>acceleration/<br>braking        | Fatigue                | Fatigue map<br>levels     |  |
| Duration               | Engine<br>Horsepower<br>(HP)       | Forward<br>collision<br>warning (FCW)    | Gender                 | Harsh<br>acceleration     |  |
| Month                  | Gearbox                            | Pedestrian<br>collision<br>warning (PCW) | Age                    | Harsh braking             |  |
| Day of the<br>week     | Vehicle brand                      | Lane departure<br>warning (LDW)          | Educational<br>level   | Vehicle control<br>events |  |



#### **Experiment Phases**

| Phase 1<br>(Baseline) | <ul> <li>Intervention: No</li> <li>Description: a reference period after the installation of the i-DREAMS system in order to monitor driving behavior without interventions</li> <li>Duration: 4 weeks</li> </ul>                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phase 2               | <ul> <li>Intervention: Real-time</li> <li>Description: a monitoring period during which only in vehicle real-time warnings provided using adaptive ADAS</li> <li>Duration: 4 weeks</li> </ul>                                                                                           |
| Phase 3               | <ul> <li>Intervention: Real-time + Post-trip</li> <li>Description: a monitoring period during which in addition to real-time in vehicle warnings, drivers received feedback on their driving performance through the app</li> <li>Duration: 4 weeks</li> </ul>                          |
| Phase 4               | <ul> <li>Intervention: Real-time + Post-trip + Gamification</li> <li>Description: a monitoring period during which in vehicle real-time interventions were active along with feedback but at the same time gamification elements were also active</li> <li>Duration: 6 weeks</li> </ul> |

ICTR<sup>2023</sup>



## **Methodological Overview**

- A naturalistic driving experiment was carried out involving 120 car drivers from Belgium, UK and Germany and a large database consisting of 26,900 trips was collected and analyzed
- Questionnaire data were also collected both before and after the field trials
- Explanatory analyses such as Generalized Linear Models (GLMs) were performed
- Structural Equation Model (SEMs) were also developed in order to identify the relationship between observed (i.e. number of speeding events) and latent or unobserved variables (i.e. crash risk)

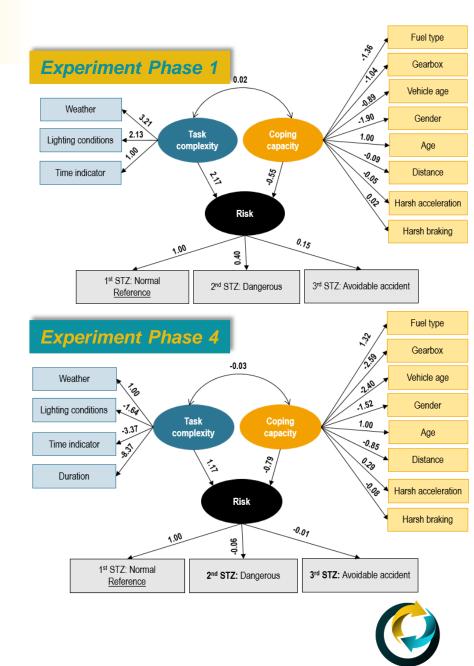




### **GLM Results**

- GLMs were employed to investigate the relationship of the key performance indicator of speeding for Belgian, UK and German car drivers
- In Belgium, the indicators of task complexity, such as time indicator and wipers were positively correlated with speeding which means that higher speeding events occur at night compared to during the day
- In UK, the indicators of coping capacity, such as FCW and LDW) were positively correlated with speeding, while gender was a significant variable showing that male drivers are more prone to exceed the speed limits
- In Germany, the indicators of coping capacity vehicle state such as fuel type and vehicle age were positively correlated with speeding

| Variables                 | Est                    | imate                  |                        | SE                    | z-value              |         | Pr( z ) | VIF   |  |  |  |
|---------------------------|------------------------|------------------------|------------------------|-----------------------|----------------------|---------|---------|-------|--|--|--|
| Belgium                   |                        |                        |                        |                       |                      |         |         |       |  |  |  |
| (Intercept)               |                        | 3.668                  |                        | 0.043                 | 85.768               | 85.768  |         | -     |  |  |  |
| Time indicator            | 0.                     | 0.908                  |                        | 0.078                 | 11.683               | 11.683  |         | 1.882 |  |  |  |
| Weather                   | 0.                     | 0.009                  |                        | 217×10 <sup>-4</sup>  | 20.952               |         | < .001  | 1.228 |  |  |  |
| High beam - Off           |                        | -0.018                 |                        | )62×10 <sup>-4</sup>  | -25.286              | -25.286 |         | 1.470 |  |  |  |
| Harsh acceleration        | eleration 2            |                        | 0.181                  |                       | 14.689               |         | < .001  | 1.013 |  |  |  |
| Distance -6.12            |                        | 8×10-4                 | 7.2                    | 273×10 <sup>-5</sup>  | -8.426               |         | < .001  | 1.678 |  |  |  |
| UK                        |                        |                        |                        |                       |                      |         |         |       |  |  |  |
| (Intercept)               |                        | -3.82                  |                        | 0.014                 | -274.62              | 0       | < .001  | -     |  |  |  |
| Duration                  |                        | 4.672×10 <sup>-5</sup> |                        | 7.877×10              | <sup>-7</sup> 59.317 | '       | < .001  | 1.058 |  |  |  |
| Harsh acceleration        |                        | -0.187                 |                        | 0.012                 | -15.37               | 7       | < .001  | 1.014 |  |  |  |
| Weather                   |                        | -0.273                 |                        | 0.023                 | -11.713              | }       | < .001  | 1.008 |  |  |  |
| Forward collision warning |                        | 10.603                 |                        | 2.479                 | 4.276                |         | < .001  | 1.001 |  |  |  |
| Lane departure war        | ning                   | 0.357                  |                        | 0.014                 | 25.348               | 25.348  |         | 1.026 |  |  |  |
| Distance                  |                        | 0.002                  |                        | 1.876×10 <sup>-</sup> | -5 117.628           | 117.628 |         | 1.072 |  |  |  |
| Gender - Male             |                        | 0.373                  |                        | 0.012                 | 31.757               | ,       | < .001  | 1.056 |  |  |  |
|                           |                        |                        | Ge                     | rmany                 |                      |         |         |       |  |  |  |
| (Intercept)               | 1.1                    | 05                     |                        | 0.057                 | 19.549               |         | < .001  | -     |  |  |  |
| Duration                  | 0.0                    | 03                     | 3.4                    | 414×10 <sup>-5</sup>  | 73.366               |         | < .001  | 1.262 |  |  |  |
| Distance                  | 5.735                  | ×10 <sup>-4</sup>      | 3.723×10 <sup>-5</sup> |                       | 15.404               |         | < .001  | 1.029 |  |  |  |
| Harsh acceleration        | 1.282                  | 1.282×10 <sup>-4</sup> |                        | 974×10 <sup>-6</sup>  | 64.951               |         | < .001  | 1.222 |  |  |  |
| Fuel type - Petrol        | 0.2                    | 219                    | 0.010                  |                       | 21.446               |         | < .001  | 1.328 |  |  |  |
| Vehicle age               | 3.162                  | ×10 <sup>-5</sup>      | 3.340×10 <sup>-6</sup> |                       | 9.469                |         | < .001  | 1.277 |  |  |  |
| Gender - Female           | -0.275                 |                        | 0.021                  |                       | -13.025              |         | < .001  | 1.256 |  |  |  |
| Drowsiness                | 1.009×10 <sup>-5</sup> |                        | 2.656×10 <sup>-6</sup> |                       | 3.800                |         | < .001  | 1.113 |  |  |  |
| Time indicator            | 8.547                  | ×10 <sup>-5</sup>      | 1.9                    | 025×10 <sup>-6</sup>  | 44.405               |         | < .001  | 1.080 |  |  |  |
| High beam - On            | 0.8                    | 817                    |                        | 0.059                 | 13.963               |         | < .001  | 1.073 |  |  |  |






### **SEM Results**

- The latent variable risk was measured by means of the STZ levels for speeding, headway, overtaking and fatigue
- The positive correlation of task complexity and coping capacity implied that drivers' coping capacity increased as the complexity of driving task increases
- This finding may be a sign of risk compensating behavior of drivers when the complexity of driving task is high, validating the assumption that risk (or its' inverse, the normal driving) is an outcome of the interaction between the two variables in addition to their separate effect
- A positive correlation of risk with the STZ indicators was identified in phase 1, while a negative correlation was found in phase 4 which showed that the latent variable risk could in fact be representing an inverse of risk, more like a normal driving





### Discussion

- Higher task complexity was associated with an increased crash risk. Drivers could probably become overwhelmed by the demands of complex tasks, leading to reduced attention to the road and other traffic participants
- Conversely, drivers with limited coping capacity may struggle to effectively manage complex tasks, leading to higher crash risk. Reduced coping capacity can manifest as slower reaction times, impaired judgment, and difficulties in prioritizing information
- The positive correlation of task complexity and coping capacity implied that drivers' coping capacity increased as the complexity of driving task increases. This means that drivers, when faced with difficult conditions, tend to regulate well their capacity to apprehend potential difficulties, while driving





### Conclusions

- Understanding and modeling the inter-relationship among task complexity, coping capacity and crash risk is vital for developing targeted interventions and countermeasures to enhance traffic safety and reduce crash risk
- This includes improving road infrastructure, implementing appropriate signage and road markings, educating drivers about the impact of task complexity on their performance, and promoting the development of coping strategies to manage complex driving situations
- Technological advancements in vehicle automation and driver assistance systems can play a role in mitigating crash risk by reducing the cognitive load associated with complex tasks and providing support to drivers in challenging conditions









11<sup>th</sup> INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Modelling the inter-relationship among task complexity, coping capacity and crash risk

#### **Eva Michelaraki**

Transportation Engineer, PhD Candidate

Together with:

T. Garefalakis, S. Roussou, C. Katrakazas, A. P. Afghari, E. Papazikou, R. Talbot, C. A. Haddad, R. Alam, M. Adnan, W. Khattak, E. Papadimitriou, C. Antoniou, T. Brijs, G. Yannis









Loughborough