

11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Impact Assessment of a novel Human-Machine Interface Prototype: A descriptive analysis from the HADRIAN project

Marios Sekadakis

Transportation Engineer, PhD Candidate

Together with: Marianthi Kallidoni, Christos Katrakazas, Sandra Trösterer, Cyril Marx, Peter Moertl, George Yannis

The HADRIAN project

> HADRIAN:

"Holistic Approach for Driver Role Integration and Automation Allocation for European Mobility Needs" <u>hadrianproject.eu</u>

HADRIAN Partners:

16 partners from 9 EU countries involving <u>National Technical University of Athens</u>

> Duration of the project:

42 months (December 2019 - May 2023)

Framework Program:

Horizon 2020 - The EU Union Framework Programme for Research and Innovation - Mobility for Growth

Marios Sekadakis, Impact Assessment of a novel Human-Machine Interface Prototype: A descriptive analysis from the HADRIAN project

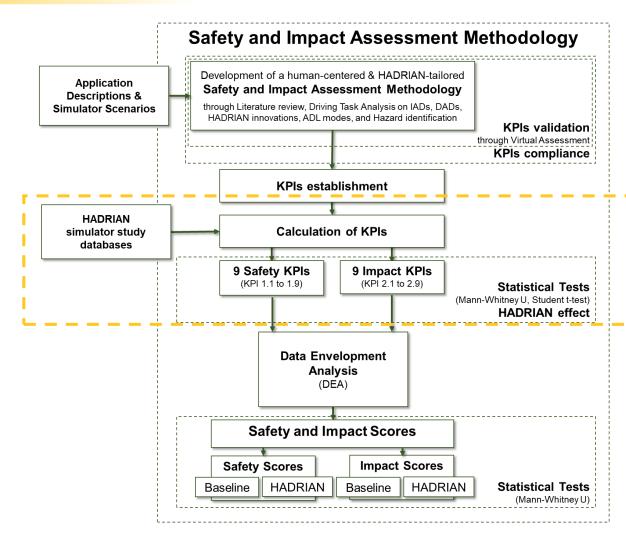
Holistic Approach for Driver Role Integration and Automation Allocation for European Mobility Needs

Introduction

- Human factor accounts for up to 94% of all road crashes.
- The introduction of Autonomous Vehicles (AVs) is anticipated to improve road safety by reducing human error.
- Up to SAE automation level 4 (high automation), the driving task will still require human interventions and interactions with the vehicle.
- Human-Machine Interfaces (HMIs) are anticipated to foster cooperation between users and vehicles.
- The HADRIAN project aimed at providing seamless and fluid interactions between the driver and the AV.

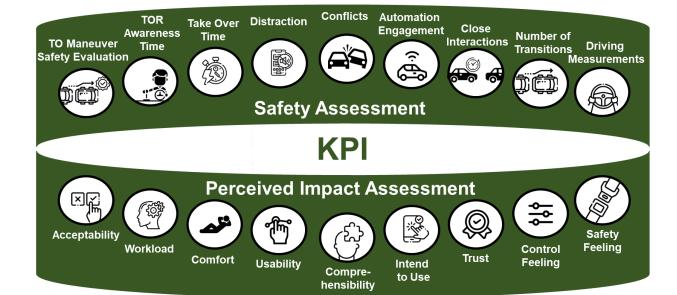
Objectives

- The present study aims at assessing the impacts of HADRIAN HMI prototypes on safety, driving performance and drivers' perceptions.
- An "HADRIAN-tailored" safety and impact assessment methodology was developed using special Key Performance Indicators (KPIs).
- The main goal of this study is to investigate descriptive insights into KPIs by the developed assessment methodology.
- The driver role for automated vehicles is also investigated and assessed using a holistic user-centered approach that evaluates the safety and perceived impact effects.
- Special focus was given to take-over requests (TORs) and Automated Driving (AD) level transitions.



Assessment Development

- The development of Safety and Impact Assessment Methodology was based on a literature review, driving task analysis and hazard identification procedure and is described in previous publications and HADRIAN documentation (https://hadrianproject.eu/results/).
- This paper focuses on descriptive insights of KPIs that were estimated through driving, eye-tracking metrics, and subjective measurements obtained during HADRIAN studies using driving simulators.
- At the final stage, a total score was calculated using Data Envelopment Analysis (DEA) to obtain scores for both the "baseline" and HADRIAN innovations for comparison purposes.

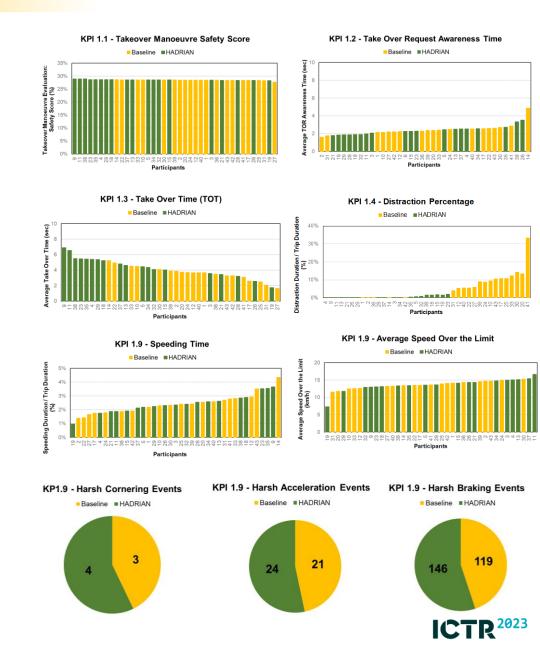


KPIs overview

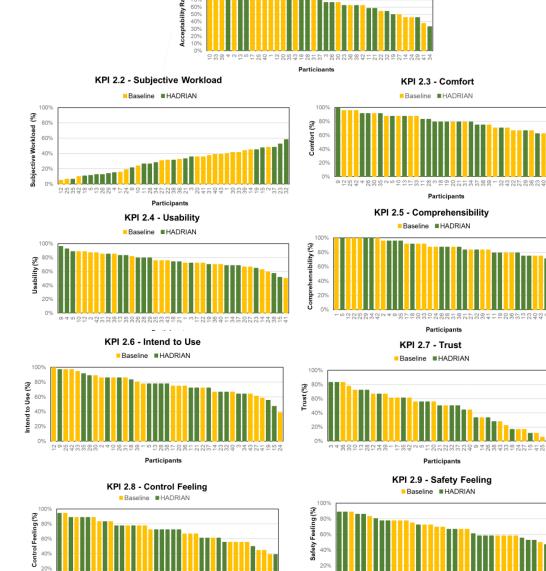
- > This KPI-based assessment consists of:
 - 9 KPIs related to safety and driving performance and
 - 9 KPIs related to the impact on the drivers' perspectives.
- Descriptive statistics were deployed in order to perform comparisons and prove the safety and impact advancements of the HADRIAN system.
- The detailed mathematical equations for calculating the KPIs were fully reported in the HADRIAN documentation (https://hadrianproject.eu/results/).

Integrated fluid HMI

- For the driving simulator experiment, 20 participants drove with a baseline HMI and 19 with a HADRIAN HMI titled "Integrated fluid HMI".
- The HADRIAN HMIs were compared with state-of-theart in-vehicle systems, serving as "baseline" HMIs.
- The HMI with all the developed HADRIAN innovations aimed to provide better automated driving predictability, availability, and continuity.
- The key feature was; guaranteed 5 seconds for take over in Automated Driving Level (ADL) 2, and 15 seconds for take over in ADL3, the duration can be predicted through road infrastructure integration.
- Driver monitoring ensured that unsafe driver states were detected, while tutoring before and during the drive aimed at teaching the driver how to use the automated driving functions and responsibilities.



Safety KPIs


- Higher differences with a positive effect on safety are depicted in KPIs "Takeover Manoeuvre Safety Score", "Take Over Request Awareness Time", "Take Over Time" and "Distraction Percentage".
- HADRIAN innovations, seem to have a positive impact on driving performance, with reduced take-over request awareness time, increased take over time and reduced distraction percentage.
- For KPIs "Speeding Time" and "Average Speed over the Limit", participants presented a higher trend in HADRIAN conditions. Similarly, "Harsh Brakings" present a negative trend.

Perceived impact KPIs

- Higher differences with a positive effect on perceived impact are depicted in KPIs "Subjective Workload", "Comfort", "Usability", "Trust" and "Control Feeling".
- HADRIAN innovations seem to produce participants with less mental or cognitive effort, higher convenience in use, more usability and more reliability.
- Lower values of KPIs "Acceptability Ratings", "Comprehensibility" and "Intend to Use" were observed with HADRIAN HMI demonstrating that the HMI was still unknown and less accepted.

Participant

Participant

Conclusions

- The results revealed that the investigated HMI prototypes impact the interaction between the driver and the AV for the majority of KPIs and specifically improved significantly a distinct group of important indicators.
- The aforementioned outcomes can be exploited by any other HMI stakeholder, in order to apply similar human-centered assessment methodologies that evaluates the way human interacts with potential HMI configurations in AVs.
- Upcoming publications and HADRIAN documentation reveal the next phases of this assessment with more thorough results.

Marios Sekadakis, Impact Assessment of a novel Human-Machine Interface Prototype: A descriptive analysis from the HADRIAN project For accessing the full reports and publications of HADRIAN:

11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Impact Assessment of a novel Human-Machine Interface Prototype: A descriptive analysis from the HADRIAN project

Marios Sekadakis

Transportation Engineer, PhD Candidate

Together with: Marianthi Kallidoni, Christos Katrakazas, Sandra Trösterer, Cyril Marx, Peter Moertl, George Yannis

