

11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Impacts of automated driving vehicles on bus depot operation using naturalistic data

ICTR²⁰²³

Maria Oikonomou

Transportation Engineer, PhD Candidate

Marios Sekadakis, Christos Katrakazas, Asier Arizala Goñi,

Together with:

Ray Alejandro Lattarulo, George Yannis

The SHOW project

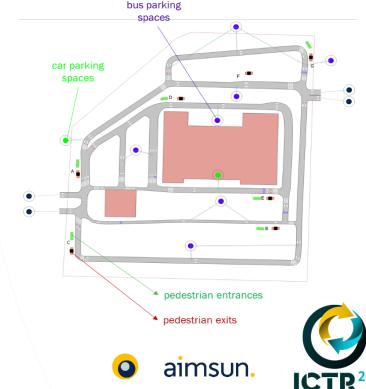
> 13 Project partners:

- 70 partners from 13 EU-countries
- > Duration of the project:
 - 48 months (January 2020 January 2024)
- **Framework Program**:
 - <u>Horizon 2020</u> The EU Union Framework Programme for Research and Innovation -Mobility for Growth

show-project.eu

Introduction

- The SHOW project aims at developing shared automation operating models for worldwide adoption.
- During the project, real-life demonstrations are taking place in 20 cities across Europe to investigate the integration of Autonomous Vehicles (AVs) into various schemes.
- The present study aims to support this real AV deployment by investigating their impacts on road safety, traffic and the environment using field data.



Methodology

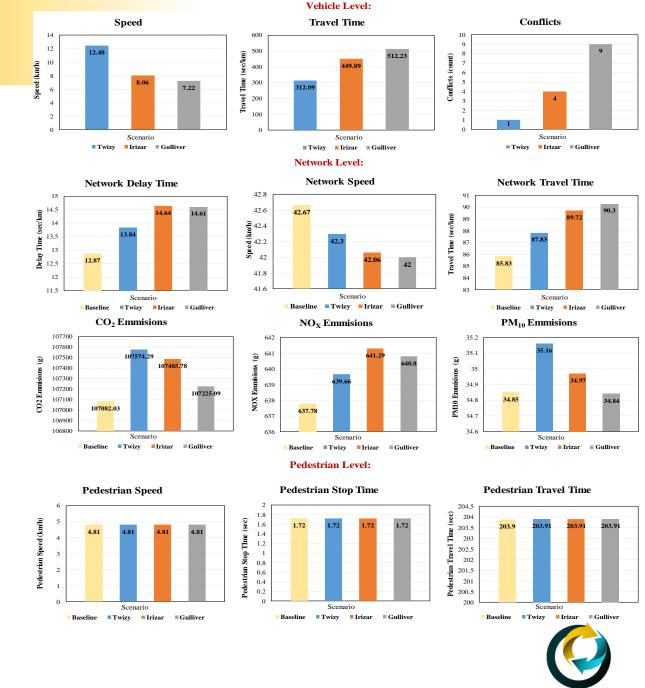
- One such demonstration site of the project is the Madrid site, which concerns a bus depot operations of the Carabanchel district and simulated in the Aimsun Next software.
- In order to provide impacts of AV operation that could not to be measured in reality, the microscopic simulation method was selected.
- The simulated network consisted of 30 nodes and 40 sections, vehicle O-D matrices of 11×11 centroids and a pedestrian O-D matrix with 6 entrances and 7 exits.

Field data integration

- The traffic simulation was performed using field data from the real-world operation, in which a fleet of up to five AVs was deployed.
- The fleet is mixed, composed of shuttles (minibuses, and a 12 meter-long bus), and passenger cars (Renault Twizy) for people transport.
- The trajectory data of three types of AV (SAE level 4) operation were considered in the simulations:
 - a 12-meter bus (Irizar)
 - a mini bus (Gulliver)
 - a passenger car (Renault Twizy)

Simulated Scenarios

Four scenarios were simulated:


- three scenarios for each of the three AVs operation (Gulliver, Irizar and Renault Twizy)
- a baseline scenario representing the existing network without the operation of AVs.
- The simulation time for all scenarios was 1 hour at a morning peak hour.
- For the automation scenarios, one route/round of each vehicle was completed during the 1hour slot.

Results

- Renault Twizy presents the highest speed, lowest travel time and conflicts occurred, since it is a light-weighted vehicle compared to the others.
- All three AVs seem to increase network delay and travel time as well as decrease network speed, since AVs are slower than manually driven vehicles.
- All three AVs seem to increase traffic emissions more than the baseline conditions.
- Pedestrian speed, stop time and travel time seem to remain unaffected by the operation of AVs.

Conclusions

- Traffic simulation, as a solid approach, enables the assessment of potential alternatives before real-life interventions including the introduction of AV services and examines their interactions with human-driven vehicles as well as with pedestrians.
- The obtained results could guide stakeholders and practitioners as the examined scenarios included fundamental aspects for future traffic conditions.
- Findings can also help accelerate the deployment of autonomous vehicles and improve safety and reliability on the roads.

11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Impacts of automated driving vehicles on bus depot operation using naturalistic data

ICTR²⁰²³

Maria Oikonomou

Transportation Engineer, PhD Candidate

Marios Sekadakis, Christos Katrakazas, Asier Arizala Goñi,

Together with:

Ray Alejandro Lattarulo, George Yannis

