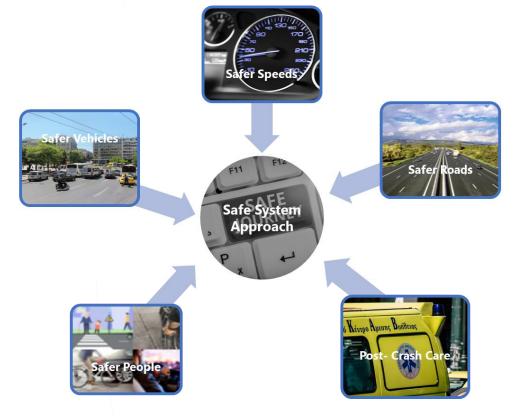


11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Modelling the behaviour of automated vehicles when interacting with jaywalkers

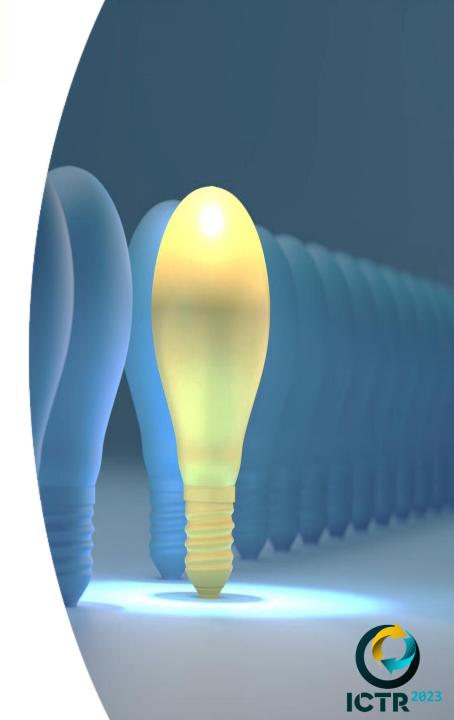
Foteini Orfanou

Transportation Engineer, PhD Candidate

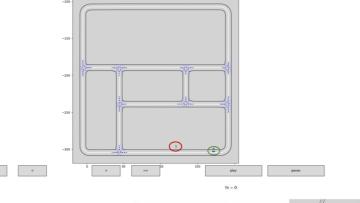

Together with: Eleni Vlahogianni, George Yannis

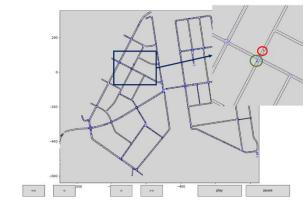
Introduction

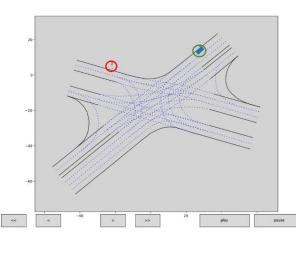
- The advent of automation revolutionizes the transportation field
- Contribution towards safer vehicles and safer people
- Safe interaction between VRUs and equipped vehicles is a major road safety pilar
- Different types of intersection areas
 Illegal crossing is considered the riskiest
- Need to understand the microscopic
 characteristics governing these encounters



Objectives


- Identification of the most critical and appropriate indicators for describing the vehicle-pedestrian interaction
- Classify the interactions in different severity levels
- Deeper understanding of the AV-pedestrian interaction process dynamics based on Inverse Reinforcement Learning principles

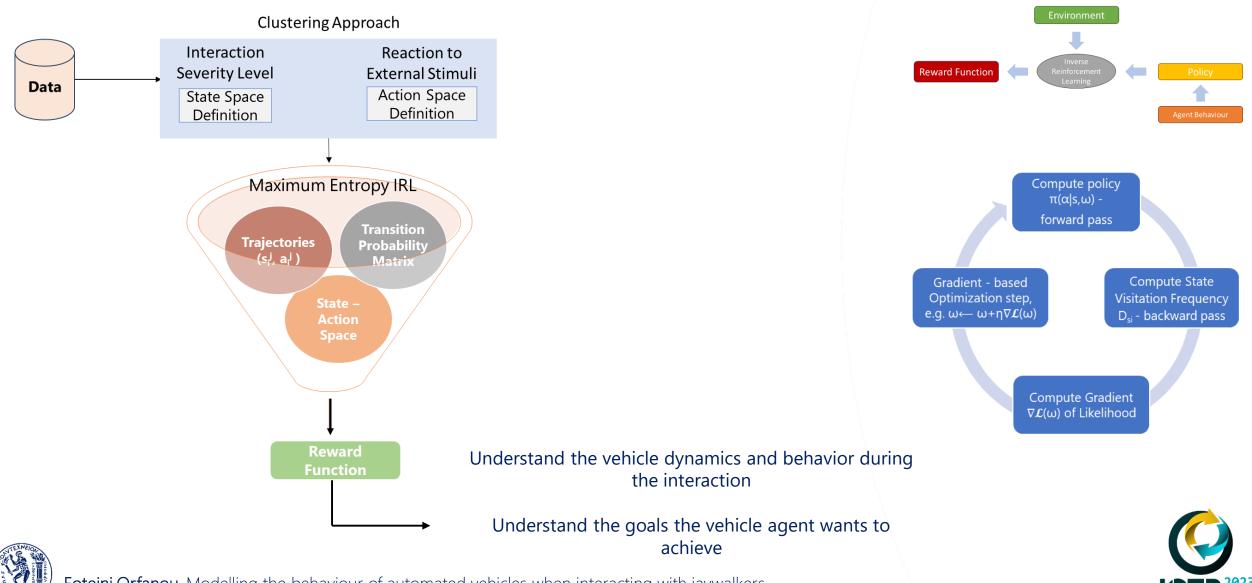




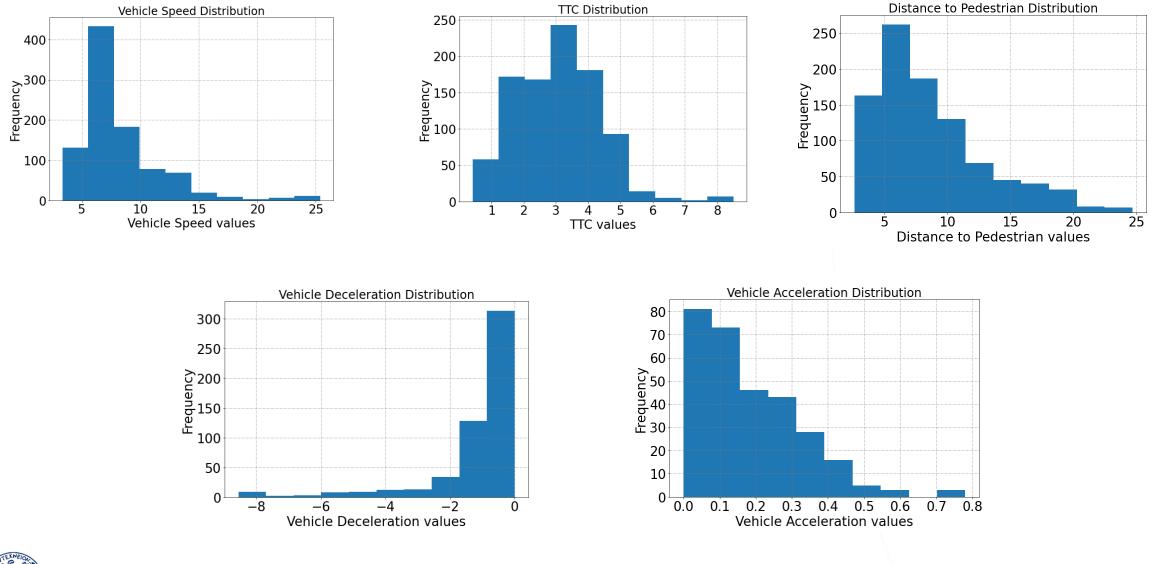
The Experiment

- Virtual Experiment led by FZI Research Centre for Information Technology
- Level 4 automated vehicle
- Human expert immersed into the scene via a virtual reality (VR) headset
- > Road crossing at a random location of the network
- Data collection in 3 different phases and networks

Data Collection


- Kinematic characteristics of the two agents
- Spatial and temporal distances
- Phase 1: 21 pair of trajectories
- Phase 2: 21 pair of trajectories
- > Phase 3: 45 pair of trajectories
- Final dataset: 50 trajectories
 Pedestrian passes first

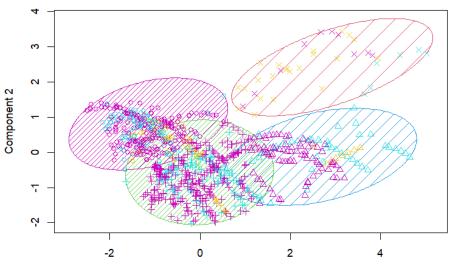
Field	Description				
Timeframe	data is collected every 100 ms	ms			
Agent -type	"car" or "pedestrian"	-			
х,у	the x and y position of the agent	m			
vx, vy	speed values of the agent in the x and y dimension	m/s			
psi_rad	the yaw angle of the agent	rad			
length	length of the agent	m			
width	width of the agent	m			
ax, ay	acceleration/deceleration values of the agent in the x and y dimension	m/s ²			
time-headway	the temporal distance of the agent from its preceding vehicle	S			
gap	the spatial distance of the agent from its preceding vehicle	m			
lateral_position	the distance of the central axis of the vehicle from the central axis of the lane	m			
side_distance	the distance from the central axis of the agent from the side object	m			
this parameter describes whether automation mode is on or manual vel control is applied. Since automation can be activated only in case the ag type is a car, this parameter takes the values "automated" and "simulate automated function is on and off respectively. For pedestrians, the only v for this parameter is "simulated".		-			



Methodological Overview

Descriptive Statistics

Foteini Orfanou, Modelling the behaviour of automated vehicles when interacting with jaywalkers


ICTR²⁰²³

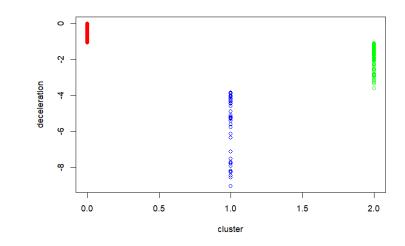
Vehicle State Space Definition

- Combination of time-, distance and speed based indicators
- Data driven unsupervised learning
 - K means Clustering
- Vehicle Speed, Gap and Time to Collision (TTC)
- > Definition of the severity of the interaction process
- Number of clusters=4
- Silhouette Coefficient = 0.462

	Average Speed	Maximum Speed	Standard Deviation of Speed	Average Distance	Maximum Distance	Standard Deviation of	Distance Average TTC	Maximum TTC	Standard Deviation of TTC	Sate Characteri zation
Cluster 0	6.91	13.24	1.61	5.60	9.5	1.51	1.83	2.65	0.54	Unsafe
Cluster 1	12.45	18.14	1.78	16.17	24.7	3.01	4.01	4.95	0.54	Safe
Cluster 2	7.11	12.01	1.58	7.90	13.06	2.34	3.64	4.96	0.58	Safe
Cluster 3	19.82	25.37	3.78	14.56	22.69	3.55	2.15	3.17	0.41	Critical

Clustering results

Component 1 These two components explain 95.65 % of the point variability.

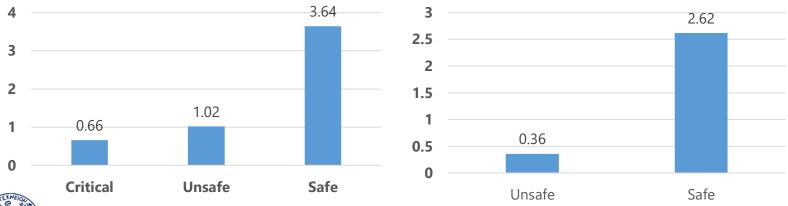

Vehicle Action Space Definition

- Critical parameter to define the driver reaction to the external stimuli
 - Acceleration/Deceleration
- Based on k-means clustering results:
 - 1 levels of acceleration
 - > 3 levels of deceleration (smooth, harsh, emergency)

➤ 5 actions

- Do nothing
- Acceleration
- Smooth deceleration (>-1.08m/s²)
- \blacktriangleright Harsh deceleration (<-3.6m/s²)
- Emergency deceleration (<-8.45m/s²)

	Average Deceleration	Maximum Deceleration	Standard Deviation of Deceleration	Action Characteriza tion
Cluster 0	-0.46	-1.08	0.33	Smooth
Cluster 1	-1.73	-3.60	0.56	Harsh
Cluster 2	-5.66	-8.45	1.65	Emergency



Actions	Value
Cruising (no change in speed)	0
Acceleration	(0, 0.78]
Smooth deceleration	[-1.08, 0)
Harsh deceleration	[-3.6, -1.08)
Emergency deceleration	[-8.45, -3.6)

MaxEnt IRL Results

- As the risk level increases the reward decreases and the vehicle "driver" gest penalized
- The expert adopts the vehicle dynamics to be more frequent under the state "safe"
- The experts goal is to take actions for avoiding the "critical" and "unsafe" states
- The reward function can be used to learn but not copy the expert' policy

Conclusions

- Clustering approach allows easier and more reliable interpretation of the reward function
- Need for additional parameter for improving the vehicle state space definition
- As expected, safer states tend to give higher rewards to the vehicle "driver"
- The transition to unsafe and dangerous states penalizes the vehicle "driver"

Further Research

- Consideration of additional parameters for improving clustering results and vehicle state space definition
 - Better depict the collision proximity and severity
- Optimization of vehicle control strategy
 - Reinforcement Learning principles
 - Model based algorithm
- Impact assessment of the proposed strategy through simulation
 - Traffic efficiency
 - Safety
 - Environment

11th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH Clean and Accessible to All Multimodal Transport Heraklion, Crete, September 20th - 22nd 2023

Modelling the behaviour of automated vehicles when interacting with jaywalkers

Foteini Orfanou

Transportation Engineer, PhD Candidate

Together with: Eleni Vlahogianni, George Yannis

